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It is shown theoretically that a bistability occurs, and there is a limitation on the
director reorientation angle, near the threshold for the Fréedericksz transition
caused in a homeotropically oriented nematic liquid crystal by a circularly
polarized light wave.

Several experiments'™ have revealed a fundamental difference between the light-
induced Fréedericksz transitions which occur in a homeotropically oriented nematic
liquid crystal when the light wave is circularly polarized and linearly polarized. In
Refs. 1 and 2, for example, in experiments in which self-focusing was being used as a
method of study, no reorientation of the director at all was detected at power densities
p three or more times the threshold py,, for a linearly polarized wave. A subtler
polarization experiment’ revealed that the director field is distorted (in accordance
with the theory of Ref. 4) at p>2p,,,, but the magnitude of this reorientation is ex-
tremely small. In addition, a bistability of the director was observed in Ref. 3. It was
stated in Ref. 5 that the behavior of the liquid crystal above the threshold is complicat-
ed because of an energy exchange between extraordinary and ordinary waves caused
because the director field was not planar. However, the director reorientation theory
of Ref. 5, which was limited by the scope of the perturbation-theory method, and
which ignored the elastic relaxation of nonplanar deformations, did not reveal the
steady-state motion of the director or describe a bistability. In the present letter we
offer a systematic theory for the light-induced Fréedericksz transition in a circularly
polarized field.

Adopting a Cartesian coordinate system with y axis running perpendicular to the
cell walls, we express the components of the director in terms of the polar angle ¢ and
the azimuthal angle ¢:

n, = sin Ycosy, n, = cos 'y n, = siny sing.

We describe the polarization state of the'-monochromatic plane light wave by the
Stokes parameters® S,, S,, and S;, which are defined with respect to extraordinary
and ordinary waves.

The self-consistent system of equations for the optical field and the director’ can
be reduced to the form

o 0
siny — = ———(—ip sin2y) + 88, sin’y , (1)
n
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l = lf - (—i ) siny cosy + 8(1 +8;)siny cosy (2)
or an on

N 0

Lt 2 ovsin?ys, - 2—7 8, (3)
an an

aS2 .2

— = — 2Nsin?yS§, , 4)
an

as )

___,3 =2 _.f Sl , (5)
an on

Here 7=t /7, is the dimensionless time, 7 = 7y/L is the dimensionless coordinate,
8 =p/p, is the dimensionless power density, 7, =y, L*/7°K, p, = mc*K /AnL?,
N=AnL /A, An = Aee/”*/2¢, L is the crystal thickness, y, is the viscosity, €, and €,
are the principal values of the dielectric tensor, Ae = €, — €, K is the Frank elastic
constant, and A is the wavelength of the light.

Setting ¥(7,7) = o, (7)sin 7 and @ (9,7) = @o(7) + ¢,(7)cos 7, using a pertur-
bation theory in the parameter ¢, to solve system (3)-(5), and using the boundary
condition S, (7 =0) = 1, we find a system of ordinary differential equations:

d
s 3p, + 8fy, (6)
dr
dQ 3 803
—_—=20—1—- = p*— & - , (7
ar of 2 ¥ ¢1f2) T

where Q = N¢3,

8 , sin2n
f1(Q)-= ;fosin’ncosnsin[Q(n - —T)]dn,

4" o , sin2q’ ,
@)= — J sin*ndn [ sinn'sin[Q(n. — 5 ) 1d7,
m o 0

The function f; and f, can be approximated quite accurately in the interval
0< Q< 1.1 by the simple expressions

fi(Q) =—06sin1Q,  f,(Q) =11sin(w Q/2).

The time dependence of Q and ¢, does not depend on the angle through which
the director plane rotates, ¢, (the rate at which this plane rotates was determined in
Refs. 3 and 7).
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FIG. 1. [—Plot of Q(8) according to
(8b) at N= w; 2-—the same, for
N =18; 3—Q(8) according to (10)
for N = 18.

A
0

03 1 &

The coordinates Q of the stationary points of system (6)—(7) satisfy the equa-
tions
Q =0, (8a)
f3 0
8*(frfa + —i)— 38(1~- E) +3=10. (8b)
The trivial solution Q = O corresponds to an unperiurbed director field, and the roots
of the corresponding characteristic equation are ') = —3 and I';, =2(6 —1). In
other words, the value § = 1 is a stability threshold. Curve I in Fig. 1 shows a nontri-
vial solution, which describes a distorted direction field (for N = « ). Figure 2 shows
the roots of the characteristic equation
2 df, d 2
2 +3+ —6°0f, — '=282Q—(fifs +=2)=0 9
( 3 0fi dQ'-) QdQ(” 4)
as a function of Q. It follows from Figs. 1 and 2 that branch 4B of the Q(§) curve is
unstable, while branch BD is stable (at point B we have 6, = 0.88 and Q, = 0.64).
Over an interval of width A§ =1 — &, there is accordingly a bistability of the direc-
tor field.

r—.
1
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FIG. 2. Roots of characteristic equa-
tion (9) versus Q for N= «. For
-1} Q< Qc, there are two real values, T,
and I',, while at Q> Q- the quantity I’
is complex. Lower curve—Rel’; upper
-2k curve—|ImT|.
-3
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Let us look at some experimental results. Curve 2 in Fig. 1 shows Q(&8) according
to a calculation for N = 18, which is the value corresponding to the experimental
conditions of Ref. 3. The width of the bistability region, A§ = 0.10, agrees well with
experimental value A = 0.13. The damped oscillations observed in Ref. 8 before the
attainment of a steady-state value of Q are explained on the basis that at Q> Q. the
stationary point of system (6), (7) is a stable focus.

The solution @(8) which we have found is fundamentally different from the
linear behavior which is characteristic for Fréedericksz transitions near the threshold
in linearly polarized light and in quasisteady fields. The same linear behavior,

Q = 2N - 1), (10)

follows from (7) if we ignore nonplanar deformations of the director field (¢, = 0).
Curve 3 in Fig. 1 shows a plot of (10) for N = 18 for comparison.

It follows from (8b) and Fig. 1 that the polar angle of the reorientation of the
director, 1, is limited to the small value ¥, ~N ~ 2 Consequently, the light-in-
duced Fréedericksz transition in a circularly polarized wave may not be accompanied
by an aberrational self-focusing.

This theory thus reveals the director field in a circularly polarized light wave and
explains the bistability and the limitation on the reorientation.
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