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Corrections in the inverse mass of a charmed quark to the effective local
Lagrangian with AS = 2 are calculated. The contributions from long and short
range are determined in a consistent way. The convergence boundary is estimated
for an operator expansion of the nonlocal part of the effective Lagrangian.

The system of neutral kaons provides important information about the overall
structure of the standard model,’ and it is a convenient test model for studying ex-
tremely subtle theoretical effects, e.g., the breaking of CP invariance.> The significant
improvements in the experimental data recently® require corresponding improvement
in the accuracy of theoretical predictions, so we can see whether theory and experi-
mental are in agreement. The K °-K° transitions are extremely sensitive to both the
mass of the r quark and the numerical values of the mixing angles for the mixing of
quarks of different generations.* For this reason, theoretical work on this process is
attracting much interest. The results are not very reliable because it is necessary to
calculate kaon—antikaon matrix elements of an effective electroweak low-energy La-
grangian with AS = 2 which has not only a local part® (in the limit 71, — o0 ) but also
a nonlocal part.® The matrix element of the K °-K © transition, determined by the local
part of the effective low-energy Lagrangian, is given in the leading approximation in
1/m, by

out < RO(K')|KO(k) >iocd= C(Mw ,m,V, a,) < RO(K)|16x° Ly | KO (k) >

in

= C(Mw,m,V,a,) < KO(K)| — m?(sv,d)?|K° (k) >, (H

where C(My,,m,,V,a,) is a coeflicient function which depends on the masses of the W
boson and the ¢ quark, on the mixing-angle matrix for mixing between generations
(¥), and on the strong-coupling constant a,. A matrix element of the local operator
(8Yed)? =5, ¥od; 5.7, d, is parameterized by the quantity By, which is in turn nor-
malized to the value found through the use of the vacuum-saturation hypothesis:

< R°(F)|(374d)2|K° (k) >= Bx < R°(K')|(37.d)?|K°(k) >V S, 2)

Below we assume that all the quarks are left-handed, unless we specify otherwise.

The nonlocal part of the matrix element of the K °-K ° transition is related to the
contribution of virtual light # quarks, whose loops on the corresponding Feynman
diagrams cannot be collapsed to a point, because there is no long-range cutoff of the
integration. The nonlocal part of the matrix element is parameterized by the quantity
D, normalized to simply the experimental difference between the masses of the K; and
K mesons:
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out < KO(K')|KO(k) >romiocd = 2mp DAmM®™P ~ § f dzTL,(z)L,(0), (3)
where L, =s; You, U, Vody, and Am®™ = my, — mg . Numerous attempts have re-
cently been undertaken to calculate the parameters B, (Ref. 7) and D (Ref. 8), but
the accuracy of the results is not yet satisfactory (particularly in the case of D). This
situation seriously complicates efforts to compare theoretical predictions of the X °-K °
mixing parameters with experimental data.

In this letter we are reporting calculations of corrections to the local part L, of
matrix element (1) in a nonleading order in m_~ . Since the mass of the ¢ quark is not
extremely large in comparison with the typical mass values in the world of light
hadrons constructed of (u,d) quarks, e.g., the mass m,, of the p meson, such correc-
tions may be important. Corresponding corrections for the decays of charmed mesons
and baryons were recently studied by several investigators.®

We wish to stress that at the order m, 2 the dependence on the boundary between
long and short range (the local and nonlocal contributions) appears explicitly, in
contrast with the situation in (1), because of operators of dimensionality 8 (e.g.,
5Y, dsyvf'w d, where f‘m is the dual tensor of the gluon field). It is therefore necessary
to determine all contributions clearly and consistently. We suggest a way to do this in
the present paper.

After the W boson and the ¢ quark are split off, we need to calculate an effective
AS = 2 Lagrangian in order to determine the matrix element. Since our purpose in this
study is to calculate the corrections to L, in expression (1) [not the corrections to the
coefficient function C(My ,m,,V,a,); such calculations, although important, would
generally constitute an independent problem], we proceed immediately to the stage in
which the ¢ quark splits off.

The effective Lagrangian consists of a heavy (local) part L ;, and a light (nonlo-
cal) part L ;. By virtue of the GI mechanism, their sum

Legr = Lg + L,

is finite in the »v limit. Each of the amplitudes L, , must be subjected to a uv regular-
ization separately. We choose this regularization in the form

LE =i / 42T L, (2) L, (0)(-u?57)",

IR =i / 42T L, (z) L, (0) (—u22?)", )

where L, is the part of the AS = 1 Lagrangian which contains the heavy ¢ quark. A
dimensional regularization is inconvenient because of complications stemming from
the algebra of ¥ matrices, while a Pauli-Willars regularization would not allow us to
evaluate explicitly all the integrals that arise.

For the heavy part we find the expansion {we are omitting the superscript R)
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4 1 4y
= —m3 2
162 Ly = —m2(§y,d)? - §O (; +In (m’

c

4 2
) -2C+ 5) “5(02+03)) (3)

where C=0.577... is Euler’s constant, O = O, + O, + O;, and

0O = 3'7ud3'7vi'vud: Oz = 9"7(,,D,,)d3‘7(“D,,)d, '7(uDu) = ('7#DV + '7vDu)/21
(6)

m,
2 dIRdLS'LdR.

2 2
Os = 37,d8(DDq + Do D)d — T'—E-ﬂi(sq,,d)ﬂ +

Expression (5) constitutes the basic result of this study: an expansion of the local
part of matrix element (1) up to order 1/m?.

The divergent part of expression (5)-—the 1/€ pole—is canceled by the short-
range contribution of the light part. For T, (x) = TL, (x)K, (0) we find an operator
expansion at small values of x*:

1
— ] 2
TL(I)I:,:_,O =Tz (z) = (5'7Ild) = 433 +0121'4$‘ . (7N
After an integration over small x(x*> <X’ in the Euclidean region) we find
Ly = i/dzTL(z)(—M222)€ - Li’“’"‘ + Lﬁtmﬂ’ (8)

where

1672 Ljhort = t/’cl:zT‘"(:::)(—pc’:a:’)€ = (3'7,.(1)2— + = 0 ( + In(? )) y (9)
1642 L' = § f daTy () (—a2)", (10)

z? > 5%
Summing, we finally find

. 4
100 16214 o, (-t + 5

4 m?2z?
+-3‘0 (ln( 4 ) +2C——)——(02+03), (1D

We see from (5) and (9)—(11) that the separation of the contributions depends
explicitly on the boundary between long and short range, x. This boundary value can
be estimated numerically from Eq. (7), as the value at which expansion (7) is violat-
ed. After we have determined X°, we still need a model for the long-range contribution
(10), in order to find the matrix element of the complete Lagrangian of the transition.

For numerical estimates we use the vacuum-dominance approximation for the
matrix elements of the local operators in the chiral limit (i.e., in the case in which the
masses of the light quarks and/or the square masses of the kaon and pions are parame-
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trically small):

< K°(k)|01|K° (k) >V 5= 62 (1 + ;\17) f%;n‘;’f

2 a2
< RO(RIOa| k() >V 5= 52 - LK,

< R°(k)|0s]|K(k) >V 5 =0,

where the parameter &7 is defined by'® (0|g,dy, F,,s| K°(k)) = — ifx6°k, and has
the value 6% = 0.2 GeV? (Refs. 10 and 11).

From expression (7), we find

2.2
T8 (2) = (s9ud)2 s (1- &% 4 o(2?) ). (12)
L B0 a8 3

The boundary value ¥* is found from the requirement x?8” = z, 1 <z < 3. Substituting
this value into (11), we find

< RO116x L |K® >V S=< RO[162%(Ly + LiPo)|K® >V S

_ 462, 462 zm? 35
2 0 2150 VS {1 _ ¢ %
= —-m; < K°|(3v,d)*|K° > (1 . 3+3 2 <1n<462>+26' 24))

= —m? < B°|(37,d)*|K® >VS {i+g:: g iy (14)
It can be seen from (14) that in the chiral limit and in the vacuum-dominance approx-
imation only the short-range component L*" depends strongly on the separation
boundary X°, at X>~& 2, where expansion (10) is violated. Since the result for L g is
generally independent of X% the strong x* dependence of L™ suggests that the compo-
nent L "¢ is important at small values of x* ~ 1/57 but quite small (?) at large values
x*~3/8% That question, however, requires a special study on the basis of some low-
energy model, e.g., calculations on a lattice or with the help of a theory of effective
chiral Lagrangians.

In conclusion, we wish to repeat that calculations of the corrections to the effec-
tive local AS =2 Lagrangian are important. These corrections must be taken into
consideration for an unambiguous determination of the long- and short-range contri-
butions. The numerical values of the corrections, which are parametrically small and
proportional to §2/m2 = 0.12, depend on the use of the chiral limit and the vacuum-
saturation approximation for an estimate of the kaon-antikaon matrix elements. For
certain parameter values (e.g., at small values of By ), this correction may prove to be
large. This result means again that a refinement of the numerical value of the param-
eter By, which has been the goal of a substantial effort,” will not by itself lead to a
better understanding of the entire short-range contribution L*". The rather strong x>
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dependence of the result [expression (14)] suggests that the L "¢ component, which
cancels this dependence, should also vary rapidly with X* near the convergence bound-
ary of expansion (7). This component must therefore be taken into account if we wish
to generate a stable prediction. Finding the absolute value of this component, on the
other hand, will require the use of a low-energy model.
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