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The behavior of disordered heteropolymer systems in the region where they
become unstable rélative to the fluctuations which destroy the spatially
homogeneous state has been studied. It is shown on the basis of the Brazovskii
approximation that the transition from the homogeneous state is a first-order
phase transition. Some characteristic features of the behavior of the systems under
consideration below the transition point are discussed.

The behavior of a system with a frozen structure disorder has recently been
studied extensively. In particular, the behavior of heteropolymer systems, i.e., linear
chains which are sufficiently long, uncorrelated sequences of two types of links which
interact in such a way that these systems in the “unfrozen” state, i.e., thermodynamic-
ally equilibrium state, should undergo a phase transition.

On the basis of a replica formalism it was concluded if Refs. 2 and 3 that the loss
of stability of the spatially uniform state of such a system with respect to fluctuations
of its composition occurs in an unusual way: At temperatures below a certain critical
temperature 7 the system undergoes a transition to a supercrystalline state with a
period L = 27/q,, where go~ ( Tc—T )'*. This transition is a third-order phase transi-
tion. This conclusion, however, seems to be a consequence of an incorrect extrapola-
tion of a mean-field approximation, used in Refs. 2 and 3, to a region of substantial
fluctuations, T < 7. Allowance for the fluctuation effects in the framework of the
approximation of Ref. 4 shows that this is a first-order phase transition.

According to Refs. 2 and 3, the free energy of the system under consideration is
. 1
F——T'{g%{;{exp(—Fn/T)—l}}, (1

where

exp(~Fa/T) = | “ﬁ" §¢a(Z°) exp(—H ({¥a(2%)}, T)/T),
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where g~ '(§°) = €¢° + 7; A (§°¢") =«/ (4% +q5); 7 is the reduced temperature,
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and € and « are certain positive molecular parameters of the system (these are differ-
ent parameters in Refs. 2 and 3). In a spatially uniform state the Dyson equation for
G, (¢°)— the renormalized Green’s function—is written in the form

g L = ‘j 3\ o~ -
/‘(“’(g J = ‘Lq T - L/ . qa)bﬂﬁ(qﬁ) (3)
aztf

Although the bare Green’s function becomes unstable at 7 < O near small values of g,
the long-range nature of the vertex A(%g” ), characteristic of the system under consi-
deration, accounts for the fact that in the limit #— 0 we are considering the minimum
of the renormalized Green’s function lies near the finite values of ¢. [ This can be easily
seen by substituting instead of G, (4°) its bare value g(3°) = (eg® + 7) ~ ' in the
integral on the right side of Eq. (3)]. To determine the nature of the transition,
therefore, we will make use of the approximation of the complete Green’s function,
which is usually used in the theory of weak crystallization:

Gaald®) = Clg— ) +r. (4)

Substituting (4) in (3) and setting n = 0, we easily see that approximation (4) is valid
and that the parameters in (4) can be determined from the equation

r=r1+ 3&/(87\"(01’)"/‘2, g2 = x/{8welCr)/?Y; C = 2. (5)

In particular, it can be seen from (5) that in the approximation used by us, as in the
weak crystallization theory,** the system under consideration does not have a stability
loss boundary relative to infinitesimal fluctuations of the order parameter. In contrast
with the usual situation, however, the value of g, now is no longer an independent
parameter of the system, but is determined by the parameter 7. In this sense, this
situation is similar to that which occurs in the structural phase transitions in polyelec-
trolytes.*” To describe the system in the ordered phase, we will therefore use, as in
Ref. 7, a variational principle® which is based on the second Legendre transform and
which makes it possible to represent the free energy as a sum of the components of the
block diagrams. In the approximation used by us this allows us to write the free energy
in the form

F,./T = min {%nqggruz - %n(n - 1at@rt ~ ijn(n —1)ke 24

1 5
+oné(egd +r)gl 1/2+n(5q0+1)A—5n(n~1) x(g2)™ ‘Az}, (6)

l\‘alr—ﬂ

where £ = 1/2m(2¢) "%, and the minimum can be found from the values of g3,r and
from the sum of the square amplitudes of the order parameter in the ordered phase
A = Za?, where the summation is over all vectors of the first coordination sphere of
the corresponding reciprocal lattice. Substituting (6) in (1), we obtain the final
expression for the free energy of the system
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We will not carry out a numerical analysis but simply note that the value of g, is
the same in order of magnitude, both in the disordered phase and the ordered phase.
The conditions under which the transition occurs can therefore be qualitatively esti-
mated by directly using the results of Refs. 4 and 5. According to these results, the
first-order phase transition to an ordered state occurs at

r e (k/4n)? 20113, (8)

However, a remarkable feature of this class of disordered systems, which directly
follows from Hamiltonian (2), is the fact that the minimum of the free energy (and
hence the value of ¢,) of the ordered phase does not depend on their symmetry or,
more exactly, on the number k of the vectors of the first coordination sphere. In other
words, below the transition temperature the system can be with equal probability in
the state with any value of &, and not only in the states with a known crystal or
quasicrystal symmetry. In this sense, this system behaves as a spin glass below the
transition point. It should be noted that such a behavior is characteristic of certain
branched (grid) systems and not only linear heteropolymer systems. This degeneracy
is lifted, however, when an arbitrarily small, single-replica term, which describes the
interaction between the fluctuations, is included in Hamiltonian (2). Further analysis
of these features may prove to be useful in the understanding of the nature of glass
transition.

In summary, we have shown that the fluctuation effects radically change the
behavior of disordered heteropolymer systems in the region of the instability of the
fluctuations which cause the destruction of spatially homogeneous state.
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