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We calculate the scattering length for transitions between edge states in two-
dimensional electron gas due to impurity short-range and long-range potential and
acoustical phonons (deformation and piezoelectricinteraction) under the
assumption that the shape of the confining potential is arbitrary.

Recent experiments'™ on two-dimensional electron gas (2DEG) in quantum
Hall regime have demonstrated that when nonideal current probes are used, the popu-
lation of electron edge states can be unequal. In this case scattering between edge
states (propagating in the same direction) affects four-probe measurements with noni-
deal voltage probe (the so-called anomalous quantum Hall effect).

Scattering of the edge states by irregularities of the boundary is discussed in Refs.
5 and 6, and scattering by impurities and phonons is discussed in Ref. 7. The confining

619 0021-3640/91/120619-06$01.00 © 1991 American Institute of Physics 619



potential U(y) in Ref. 7 was assumed to be parabolic. However the parabolic potential
has no flat domain which corresponds to the interior of the sample. This accounts for
the absence of quasibulk states and one cannot reveal the properties of scattering
which appear when the Fermi level is close to a bulk Landau level. In this Letter we
calculate the scattering length of the edge states due to impurities and phonons for an
arbitrary potential U(y). Further, the impurity potential in Ref. 7 was assumed to be
of a short range, while it was shown, both theoretically®® and experimentally,'®!" that
for GaAs/Ga, _,Al, As heterostructures the dominant scattering mechanism is a
long-range potential due to the remote ionized donors. This is why in this Letter we
calculate the impurity scattering length for the long-range and for the short-range
potential.

The wave function of the edge state is
¥ni(r) ~ exp(ikz) xnk(¥)(2) . (1)

The location of the edge state with respect to the boundary of the 2DEG depends on
the wave vector k. When k— + o, state (1) transforms into a quasibulk Landau
state, and its energy E,, - E, = fiw, (n + 1/2), where v, is the cyclotron frequency,
and @(z) is the wave function of the spatial quantization of the 2DEG in the direction
normal to the heterostructure interface.

Impurity scattering

In the Born approximation one can calculate the elastic scattering length for
transition n—n’

1/lnsrt = (1/vnv) / dg, < UU >q |Pam[?/2%, @)

where (UU ), is the 2D Fourier component of the scattering potential correlation
function taken at the 2DEG plane, q = (q,,q,), v, is the group velocity of the edge
state #, and

Prnt(gy) = / dyxn () exp(—iqy¥)xn(y) . (3)

In (2) one should set ¢, = 6k, = |k, (E) — k, (E)|, where E is the energy of the
initial state (see Fig. 1). The velocities v and functions y for states » and »’ correspond
to the energy E = E.. Note that /

n—n — ln'an‘

As in Refs. 8 and 9, we assume that the ionized donors are situated in a narrow
layer separated from the 2DEG plane by the undoped spacer of thickness z,. Because
of the electron neutrality, the density of these donors (per cm~?) is N, + N, where
N, is the density of the 2DEG and N, is the density of the depletion charge layer on
the GaAs side; the latter is assumed to be uniformly doped by the acceptors with the
net density (per cm ) N,c. The correlation function (UU ), can then be written in
the form®

27e?

2
ZG);) [(N, + Ng) exp(—2¢20) + Nac/2q], 4

<UU>,,=(
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FIG. 1.
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where € is the lattice dielectric constant which is assumed to be the same for GaAs and
GaAlAs, €,(q) =1+ gq,/q is the dielectric function of the 2DEG, and ¢, is the
screening parameter. The first term in (4) corresponds to the long-range part of the
scattering, while the second term corresponds to the short-range part.

For the long-range scattering one can proceed further under the assumption that
8k, 2o > 1. In this case only small values of g, =~ (8k,, /z,)"/? contribute to the inte-
gral (2). Using this simplification, one can calculate the scattering length due to the
long-range potential

1/1E, 0 = (1/1L) exp(—26knn 20) A2y (5)
where 4,,, = P, (0), and the nominal scattering length is given by
1/l = 2x%/%(27¢? [he(vnvnr ) Y32 (N, + Na)(6knn/20)*/ (Sknmr + ¢2)* (6)

Because the factor exp( — 26k, z,) in (5) is small, the scattering is strongly sup-
pressed compared to the case of zero magnetic field, even when the spatial separation
between edge channels 8y, = aj,8k,, , where a,, is the magnetic length, is not large
compared to a;;. For the short-range scattering Eq. (2) cannot be reduced to a more
simple form without any assumption concerning the confining potential.

Now we consider the case of the smooth potential U(y), where U’ (y)a,, <fiw,.
In this case we have

Xnk(y) = n(y — ka}y)., (7)
Epp = By + Ul(kaky).

where @, is the harmonic oscillator wave function. In the smooth potential the over-
lap integral (3) can be calculated explicitly. Using (7), we have

Al = (2"+"'n!n'!)'la'2”+2"' exp(-0?/2), (8)
where o = (,,,/a,;)*> 1. The short-range scattering length /3 becomes

115 0 = (2%)” 1/2(2x€? /he(Vavn )| [N ac/am6knnt (Sknnt + ¢5) | A2 (9)

nn! —
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The group velocity in the smooth potential is
vni = ajU'(kak) . (10)
It follows from (8) that in the smooth potential the dominant transition is n—n + 1.

Acoustical phonon scattering

Since the sound velocity s<wv,,v,,, the scattering is quasielastic, i.e., the energy of
the emitted or absorbed phonon fiw €%w,, . Hence, in the transition n—-n’ (see Fig. 1)
the change of k is 8k,,, . The minimal energy of the phonon is A, = #sék,,. . In what
follows we consider low temperatures 7€ A, . Because of the phonon Bose factor and
the Pauli exclusion principle, the phonon energy #iw is close to the threshold A,,.. As a
result, the calculation of the scattering length is greatly simplified. In the Born approx-
imation for the deformation potential scattering (DA)'?

1 52 2 6’0,".1 e Apn
In—.n’ 2ﬂ'hp82 nn'! hv"v”, TF (i) T ) s (11)

where
F(€,1) = (1/2)[In(1 + exp(€ — n) + exp(€) In(1 + exp(—€ — )] . (12)

Here = is the deformation potential constant, p is the crystal density, and e = E — E.
The velocity v,, and the function y,, of the final state correspond to the energy of this
state E = E’. Equation (11) is valid if exp(e — A/T) €exp(A/T) or, in other words, if
lel <A, and if e — A, €A, . In the first case #iw — A, ~ 7, while in the second
case fiw — A, —~€ — A,,.. It was assumed that T> ms?, and that A . <#s/d , where d
is the scale of the function ¢(z). For a GaAs/AlGaAs heterostructure d = 3 nm,
s =5x10° cm/s, ms*> = 0.1 K, and #is/d = 13 K. Assuming 8k, =a !, we have for
H=2T: a,;, =18nm, A,, =2 K and #iw,, = 39 K. The inverse scattering length (3)

is averaged near the Fermi energy:

<n—ml> /dE< afo) ,,_.:,(E) (13)

The function F increases exponentially with € for > 0 and the average value is due to
the hot electrons (e~A,, >T), rather than thermal electrons (e~T). Since

A, <#wy, we can set E = E.. With the above-mentioned assumptions for the DA
scattering

1 1 2 8 8 ( An"l )
_— = - 14
<,”_m, >DA (foA)s Apm (Skn,ran) v exp T ) (14)

For the piezoelectric PA scattering'? the calculations are similar:

1 1 Do
——— = _——- "l 5k ' ex (—' b ) . 15)
<ln-on' >PA (TPA)H ( nn H) UnUp! P T (

Here we define the nominal scattering times
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(1/7pa)m = E*/4xhps®a}; | (16)
(1/7pa)m = (eB)? /4nhps*ay .

where 3 is some piezoelectric modulus. For GaAs at H =2 T we have (Tp, )y = 800
ps and (Tp, )y = 40 ps (22 and 3° were taken from Ref. 12). The exponential sup-
pression of the scattering rate is due to the deficit of the free final states below E .

To consider the case of the smooth potential, one has to substitute Eq. (7) for
A, in (14) and (15). Comparing (14) or (15) with Eq. (7) in Ref. 7, we see that the
corresponding equations agree only in the exponential factors from the overlap inte-
gral and from the deficit of the final states.

Discussion

Let us estimate /, , in the simplest case where the Fermi level is far from the
Landau levels (i.e., the field H corresponds to the quantum Hall plateau), and the
potential U(y) is not smooth; i.e., 8k, ~a, ' and v,, vy~a, ®, ~v.. To determine the
dominant mechanism of the impurity scattering, it is sufficient to assume the charac-
teristic lengths contained in the pre-exponential factors in (5) and (9) to be the same:
a,=z,=k;'=¢g '=k ~'=10 om and N, =N, = 10'> em 2. Comparing (5)
and (9), we see that the long-range scattering dominates if the thickness of the spacer
z, is less than

zy = (1/26knn) In(K2 /N ac) . (17)

At N, =10" ecm ® we have z¥~60 nm. To calculate /, ,, we assume
810 =1.5a,, v, =vy~v;:/3, N,=N,=35%x10%cm > (k, =1.5X10°cm "), v,
=2.6X10” cm/s, and g, = 2.0 X 10° cm ~ ', The rate of the long-range impurity scat-
tering depends strongly on the value of the parameter 8k, z,. Setting z, = 40 nm, we
have /¥ ;=3 um at H=2 T and /| ,=30 gum at H=75 T, while the transport
scattering length at H = 0, which corresponds to the typical value of the zero-field
mobility u =5x10° ¢m?’/V's, is =5 um. For the DA scattering /, ,~1000
pm exp(3 K/7T) and for the PA scattering /, _, =5 pm exp(3 K/T)). It follows from
these calculations that the impurity scattering is strongly suppressed compared to
H =0, if H is high enough and if the phonon scattering is always weak. Note that the
DA phonon scattering length estimated in Ref. 7 is much shorter. The reason for the
difference is attributable principally to the choice of the electron—phonon interaction
constant. The constant used in Ref. 7 is not related to the deformation potential
constant =.
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