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A method is presented for calculating in the long-wavelength approximation of the
autocorrelation function of the angular velocity of molecules of a liquid. This
autocorrelation function calculated for water is in agreement with experiments on
the inelastic scattering of slow electrons.

The autocorrelation function of the angular velocity of water molecules at a tem-
perature of 300 K has been obtained by the method of slow-neutron inelastic scatter-
ing.! Existing models of the autocorrelation function of the angular velocity® do not
reflect important details of the experimental curves. If the equation chain of Mori is
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used according to the method of Refs. 3-5, then the first two equations of the autocor-
relation function () = (@(0)w(#))/{w(0)?) can be written

f%&ﬂ = —w? [ f(t — r)y(r)dr,

Clamyen

(D

g‘—gl = —be(t —71)f(r)dr,

where £ (¢) = {(@(0)@(2))/{®(0)?), w? = (©(0)*)/{w(0)?), and @ (¢) is a compo-
nent of the angular momentum vector of the molecule.

To derive Egs. (1) it is necessary, following the work of Refs. 3-5, to eliminate
the projection operators and in the long-wavelength approximation ignore the unsym-
metric correlation functions.* Here the long-wavelength region means the region
where the wavelength of the external perturbations is considerably larger than the
correlation length of the different particles. If we use the explicit form of the classical
Liouville operator, then for linear molecules it is easy to find

w? = L?/KpTI, f(£) =< L{O)L(t) >/ < L(0)* >,

R(t) =< w(0) v L(0)w(t) v L(t) > / < L(0)* >, L? =< L(0)* >, (2)

where L(t) =@(t)I is the torque acting on a molecule from its surroundings,
VL(t) = &(t)] is the angular gradient of the torque, I is the moment of inertia, and
K is the Boltzmann constant.

Let us introduce the correlation time 7, of the angular velocity and the correla-
tion time 7y, of the torque gradient by the expressions

Tw = | Y(r)dr, rgr = | h(r)dr, 3)
/ /

where h(t) = (VL(0)VL(2))/{V(0)?).

The main assumption that permits the chain of equations to be closed reduces to
the inequality

Tw K TyL. (4)

For most liquids inequality (4) is a natural one, since from physical considerations the
quantity 7y, should be of the same order of magnitude as the reorientation time of a
molecule, and it can be estimated to be 7y, « 1072 s (Ref. 6), which is two orders of
magnitude greater than the value 7, oc 10~ '*s (Ref. 1). In general, inequality (4) may
not be satisfied. The existence of a hierarchy of times 7, and 7y, in a liquid may be
related to the particular features of the spatial structure of the intermolecular interac-
tions. A typical pair potential of the interactions consists of a superposition of the
short-range forces of repulsion and the long-range forces of attraction. Presumably,
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FIG. 1. Autocorrelation function of the angular velocity of water molecules at 300 K. Solid lines represent
the numerical solution of Eq. (5); the points represent the experimental data of Ref. 1.

the short-range forces provide a fast relaxation of the angular velocity of a molecule
long before it hops to a neighboring site, while at the same time the correlation of the
torque gradient is still conserved through the lone-range part of the potential. A quan-
titative analysis of this process may be the subject of a separate investigation.

Assuming that inequality (4) is satisfied, we separate the variables in R(¢) and
disregard the time dependence of the slowly varying function 4(¢). Finally, in place of
Eq. (1) we have

¢
Md‘ﬂ = ~w? { f(t = r)¢(r)dr, 5
‘ )
t
G = —ud [ et = )1 (r)ar,

where w3 = (VL(0)?)K T /(L(0)*)I. A similar means of closing the Mori equations
was used in the calculation of the structure factor of liquid rubidium.*

The curve obtained by a numerical solution of Eqgs. (5) (solid line) is shown in
Fig. 1, which also shows the experimental curve (points) from Ref. 1.

The parameter (L(0)*)"? =5.2X 107 N-m is taken from Ref. 1, and the
parameter (VL(0)?)"? =4.7x107 ' N-m was chosen to make the theoretical curve
coincide with the experimental curve. The quantity I was chosen to be equal to the
average moment of inertia of water, I =2x10"* m-kg (Ref. 1).

In conclusion I note that with the Laplace transform one can obtain a solution of
Egs. (5) in the form of a combination of normal elliptical integrals.

I would like to express my thanks to R. A. Dautov and R. M. Yul’'mer’ev for
interest in this work and for helpful comments.
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