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A unifying picture of scaling properties of D-dimensional Gaussian manifolds
embedded in d-dimensional random media is presented. It is demonstrated, in
particular, that for the special case of uncorrelated disorder manifold is stretched
for D> 2d /(4 + d). The phase transitions between different stretched states and
from the Gaussian form to the stretched form are predicted for 2d /(2 + d)
<D<2and0 <D <2d /(4 + d), respectively.

The properties of various manifolds (e.g., interfaces, membranes, polymers, etc.)
interacting with random environment are the subjects of great importance in many
branches of physics, chemistry, and biology. Despite their practical relevance and
intrinsic interest, the theoretical understanding of these problems is still incomplete.

In the present letter we give a comprehensive description of the scaling properties
of the above objects using a Flory-like approach invented by Zhang' in a different
context.
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We begin with the D-dimensional generalization of the Edwards model® for poly-
mers, disregarding the self-avoidance effects. Consider a configuration h(p) of a D-
dimensional manifold immersed in a d-dimensional random medium. It can be de-
scribed by the partion function

2(h,p) = exp(~F/T) = [ Dhexp{~ [ ap(5] 7o h(a)P* +V(R)/T)} D

where F is the free energy, 7 is the temperature, I" is the manifold stiffness, V(%) is the
random potential with zero mean, whose properties are specified by its correlation
function (V(h)¥(0)) = A’R, (h), where A? is disorder strength R, (k) is a function
of characteristic width a [for scales /# < a the random potential is strongly correlated
and R, (h<a) = const]. The finiteness of @ plays an important role, as will be shown
below. In what follows we assume that R, (h>a) = 2 “ The problem formulated in-
volves another intrinisic scale /, which follows simply from dimensional arguments.
For a manifold of linear size p and total size 4 the two terms in the Hamiltonian in (1)
scale as [p”~?h % and Ap®h “*/T, from which we can form a dimensionless coupling
constant g(h) = Ap®h *?/TTp”~2h 2. In the absence of defects the manifold is Gaus-
sian, i.e., [p” ™ 2h >~ 1. Substituting this expression in the above determination of g,
we obtain

g = (h/zd)I4D+a(2‘D)1/2(2—D); Iy = (T/APD/(2-D))2(2—D)/[4D+a(2—-D)].(2)

Note that g(a) controls the dimensionless disorder strength.

For the special case D =1 the partion function (1) obeys the Schrodinger-like
diffusion equation (where p is the time) and describes diffusion in a random environ-
ment (see the review articles in Refs. 2 and 3). Therefore, the comparison with some
rigorous results will be possible.

We are interested in the scaling dependence of the moments (Z ") and the mani-
fold size h=~4 . The free energy fluctuation AF is also of interest. It is customarily
assumed that

AF|T =T A%pD-2+2v (2)

which follows from a dimensionality argument about the elastic term
(Tp®(h /p)*~TA%”~2+?") in (1). Let us assume that the partion function (1) is
the nth power and average it over the disorder

< Z" >=< exp(—nF/T) >= /DheXp{—(F/2)/dei‘ Vb hif®

i=1

+(A2/2T2)//dede'qu(]hg ~ R))} . 3)

B

It describes n identical manifolds, or replicas, with mutual interaction R, (A). In
what follows we shall calculate (Z ") with exponential accuracy, omitting all the nu-
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merical factors. However, before actually tackling the above path integral let us dem-
onstrate, following Zhang' how to obtain the exponent v and prefactor A. Suppose (3)
is of the form exp(Bn®p?), i.e.,

/dFP(F) exp(—nF/T) =< exp(-nF/T) >= exp(Bnfp?) , (4)

then (4) can be interpreted as the Laplace transform of the probability distribution
density P(F) of the free energy of a single manifold in random media. Inverting (4)
permits us to find the free energy distribution density

P(F) = exp[~(AF/T(p"B)"/#)P/(F-1)),

where we set (F) = 0. The knowledge of P(F) enables us to determine the free energy
fluctuation AF /T~ (Bp")"?. Comparing it with (2), we finally obtain

A2=Bl/ﬂ/1‘; y:(2-—D)/2+’1/2/@ . .(5)

The last identity was first obtained by Zhang.! From (3) we have estimated for
the free energy of n replicas:

Fn/T ~ n(FpD-—2h2 + pD/PD/(2—D) h2D/(2—D)~) _ n2A2p2Dha/T2’h > a. (6)

The first term is the elastic energy of the distorted manifold, the second term
(which is relevant for 0 < D <2 only) is an entropic repulsion among replicas confined
into a well of characteristic size #.>* The third term is defect-induced interaction
among replicas. For A? = 0 minimization of (6) with respect to 4 leads naturally to
the Gaussian manifold

h(p) = p*~P/T. 7

For a > 0 the third term in (6) corresponds to the repulsion between replicas. In
this case the minimum in (6) for p— «» is determined by the first and third terms:
h=(nA’p"*2/T?T)"*~ . This solution is valid in the region 0<a < 2. Substituting
it into (6), we obtain the following expression:

ln < Z" >= (A4/T4Fa)1/(2—a)n(4—-a)/(2—a)p(4D—Da+2a)/(2—a)’ (8)
h = (A/TT)¥(4=a) pd/(4=2) (9

Expression (9), however, is not asymptotic. For positive @ v > 1; i.e., the Hamiltonian
in (1) is unstable with respect to adding infinitely many gradient terms. However, this
change in the partion function (1) appears only at A~p.

For negative « it is useful to change @« = — d in order to include the case of &-
correlated disorder. If 2D /(2 — D) >dand 0< D <2,0r2d /(2 + d) <D <2, Eq. (6)
has a single minimum A~ max{(T?%/A%np°T?/2— D)@ - D/R2D—d2 =D g} 1f

(T?/A%npPrD/(2-D))(2-D)/2D=d(z=D)] , o | (10)
straightforward algebra gives the results
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ln< 2" >~ {(A/T)4DI\Dd(npD)4D-—d(2-—D)}I/IZD—d(Z—D)]’ (11)
h = {(A/T)ZDrd-ZD}1/[4D—d(2-D)]p . (12)

Note that (11) coincides with the available exact solution® for the special case
a=0,d=D=n=1.1If (10) is broken, we obtain

In < Z" >= A?n?p?P /1254, (13)
h= (&/TTad/?)V2, (1)

For D=1, Eq. (13) was initially derived by Zeldovich et al.

If0<D<2d/(2+d), Eq. (6) has two minima h, = h;(p) (7) and h,~a. Sub-
stituting (7) into (6), we obtain

Fn/T o n — A2FJ/2T'—2n2p2D—d(2—D)/2.

It is clear that the results depend on the sign of 4D —d(2 — D). For
2d/(4+d)<D<2d /(2 +d) we find

In< 2" >= A2 1m/ 72,2 2D d(2-D)/2, (15)
b~ (A-«-\d,li 1/T)1/2 d(2-D)/8 (16)

Comparing (15) .and (13), we conclude that the solution is stable only for scales
p<(La®)2=D TIn the case of opposite inequality, we return to (13) and (14).

The solution (13), (14) is also stable for 0 < D <2d(4 4+ d) if inequality (10) is
valid. If (10) is broken, the Gaussian manifold solution (7) is stable. For D>?2
expression (6) contains the only minimum A =q and we return results (13), (14). Let
us discuss now how the replica results manifest themselves in the original random
system, i.e., in the limit #»—0. The situation for —d=a>0, D>2 and
2d /(4 +d) <D <2d /(2 + d) is clear: the manifold is stretched according to (9) and
(14) [with the crossover regime (16), (17) for 2d /(4 + d) <D <2d /(2 + d)], re-
spectively. Other cases 0 < D <2d /(4 + d) and 2d /(2 + d) < D <2 are connected with
the inequality (10) which cannot be continued to # =0 in a straightforward way.
However, this problem has a simple solution. Indeed, the probability distribution func-
tion P(F) in (4) is obtained for large p. Therefore, (4) in fact imposes a relationship
between the saddle-point value of # and p: for n—0, p— o, we need BnPp”~1. The
results which follow from this rule and from (7) and (10)—(14) can be conveniently
represented in terms of g(a) (2)(for D = 1 similar results were obtained by Natter-
mann and Renz?).

For 2d(2 +d) <D<«2 one predicts the phase transition between different
stretched states: from (11), (12) {for g(a) < 1] to (13), (14) [for g(a) >1].

For 0 « D < 2d /(4 + d) the phase transition from the Gaussian manifold (7) [for
g(a) < 1] to the stretched manifold (13), (14) [for g(a) > 1] takes place.

In conclusion, let us discuss the range of validity of the results obtained. First, the
path integral (3) was estimated using the saddle-point approximation. Such approach
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differs from the rigorous solution only in the sub-leading-order terms for large p.
Moreover, this estimate was satisfied with the help of a Flory-like arguments.'> How-
ever, such an approximation is essentially uncontrolled.” Therefore, an independent
treatment is necessary to confirm (or reject) the Flory-type results. We believe that
our method gives the correct (if not exact) values of the exponents, since it reproduces
the exact result® for a =0, d = D = n = 1 and the results obtained independently for
D=1
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