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The magnetization M is found as a function of the field A for a frustrated 2D
Heisenberg antiferromagnet on a 4 X 4 square lattice through an exact
diagonalization of the Hamiltonian. The set of plateaus on the M = M (H) curve
confirms the analogy between an antiferromagnet and the fractional quantum Hall
effect.

The discovery of high-T. superconductivity has attracted increased interest in the
properties of a 2D antiferromagnet, particularly its frustrated phase, whose ground
state is believed to be a spin-liquid state. In an effort to describe this state and the low-
lying excitations, Kalmeyer and Laughlin' have proposed using some wave functions
which have been used successfully to explain the fractional quantum Hall effect. Since
that study, the analogy between the two systems (a 2D frustrated antiferromagnet and
the fractional quantum Hall effect) and between the basic properties of these systems
(e.g., the gap in the spectrum of excitations and the fractional statistics) has been
studied in detail.>® Whether this analogy holds for the antiferromagnet as a whole,
rather than simply for its ground state, is not yet clear. In particular, does this analogy
extend to the states with a nonzero magnetization to which the antiferromagnet makes
transitions in an external magnetic field?

Let us examine a 2D frustrated spin-1/2 Heisenberg antiferromagnet at absolute
zero in an external magnetic field H strong enough to flip a substantial fraction of, or
even all of, the spins to the field direction:
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The spins are at the sites of a square lattice; J;, is the exchange interaction between
nearest-neighbor spins; the vector e connects spins at opposite ends of a side of a
square; J, is the exchange interaction between the next-nearest spins; and the vector d
connects the spins at opposite ends of a diagonal of a square.

Kalmeyer and Laughlin' analyzed a 2D antiferromagnet on a triangular lattice.
That system has a frustration by virtue of the structure of the lattice itself. For an
antiferromagnet on a square lattice, there is a long-range Néel order in the ground
state. For this system, the frustration is introduced by the interaction of the next-
nearest spins. The frustration disrupts the long-range order.

In their effort to describe the spin Hamiltonian, Kalmeyer and Laughlin obtained
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boson creation and annihilation operators through the use of Holstein—Primakoff
transformations. In other papers,” the spins have been represented in terms of electron
creation and annihilation operators. The ground state and excitations of the system of
bosons or electrons have then been studied by variational methods on a lattice. The
Laughlin functions, which have been used previously for the fractional quantum Hall
effect, are used as the variational wave functions. In any of these representations, the
magnetization operator of the spin system, M = 2,5, becomes the number operator
of the particles which behave as electrons under conditions of the fractional quantum
Hall effect. A magnetic field H applied to an antiferromagnet thus corresponds to the
chemical potential z in the system of electrons under conditions of the fractional
quantum Hall effect, and the magnetization, when thought of as a function of the
magnetic field, M(H), corresponds to the number of particles N(x), which depends
on the chemical potential.

Upon a change in the chemical potential, the properties of a system of 2D elec-
trons under conditions of the fractional quantum Hall effect (Ref. 4, for example)
change periodically, depending on whether the chemical potential is in the gap in the
spectrum of excitations or in a gap between neighboring Landau levels. When the
filling of the Landau levels, v, becomes equal to certain rational numbers, the system is
in a state of an incompressible fluid. One might thus expect that again in the case of an
antiferromagnet a variation of the magnetic field would put the system in states with
different magnetizations, and the properties of these states would vary periodically.
The states themselves could be described by wave functions corresponding to the states
of the fractional quantum Hall effect with certain rational values of v. The curve of
N(u) for the electrons under conditions of the fractional quantum Hall effect has a
plateau when u lies in the gap in the spectrum of excitations. One might thus expect
that the curve of M(H) for an antiferromagnet would also have a set of plateaus.

We have calculated the magnetization of an antiferromagnet in a strong field for a
4 X 4 lattice with periodic boundary conditions, through an exact diagonalization of
Hamiltonian (1). Since the magnetization operator

M=3S:

commutes with the Hamiltonian, it is sufficient to find the energies of the ground
states in the absence of a field (H = 0) in the subspaces of states with certain values of
M. We considered states having various symmetries under translation, rotation
through 90°, and reflection of the lattice. In each subspace of states, we then found the
ground state, its energy, and other characteristics, by an iterative method. The param-
eter r =J,/(J, + J,), which is a measure of the degree of frustration, was varied over
the interval 0<r<1. At r = 0, there is a long-range Néel order in the ground state. At
r =1, the system can be partitioned into two noninteracting sublattices, within each of
which there is a long-range order. At the point r=0.35 (J,=0.55 J,), where the
frustration is at a maximum, a phase transition occurs.>¢

Figure 1 shows curves of M(H) for two characteristic cases. In Fig. la, there is
no frustration (# = 0), while in Fig. 1b the frustration is near its maximum (r = 0.35).
The steps in each case correspond to the flip of a single spin (a unit increase in the
magnetization). These steps become rounded as the dimensions of the system are
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FIG. 1. Field dependence of the magnetization of an antiferromagnet. a~—No frustration (there is no
exchange interaction between next-nearest spins); b—with a nearly maximum frustration, in the case in
which elongated plateaus appear.

increased. In the » = O case, the steps are regular, while at » = 0.35 some of the steps
have become larger, and others smaller. In the limit of a system with large dimensions,
this trend would correspond to the appearance of plateaus on a smooth curve.

We thus see that certain states with a definite magnetization (M = 2.4) are high-
ly stable, and the system will remain in such states in the face of fairly strong varia-
tions in the external field. This property is analogous to the incompressibility of the
states of the fractional quantum Hall effect at certain rational values of v. The sizes of
the plateaus depend on the parameter r, reaching a maximum at maximum frustration.
These plateaus arise when the magnetization has values equal to 1/4, 1/2, and 3/4 of
its maximum value. This comment apparently also applies to the large dimensions of
the system. If we modify the system, however, and add to Hamiltonian (1) an interac-
tion between more remote spins, then plateaus may arise at other values of M.

It can thus be concluded that the magnetization of a frustrated antiferromagnet
has a set of plateaus in strong fields. The dimensions and positions of these plateaus
depend on the type of lattice and the degree of frustration. The frustration plays an
important role. The analogy between a frustrated antiferromagnet and the fractional
quantum Hall effect runs deep. It is not limited to the energy region near the ground
and low-lying excited states of the antiferromagnet. These results suggest that Kal-
meyer and Laughlin’s approach can also be used to find a description of the states of
an antiferromagnet with large values of M.

We wish to thank A. B. Kashuba for useful discussions and A. S. Semenov for
assistance.
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