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The orthogonality catastrophe for Luttinger liquid has been studied.
Surprisingly, it was found that the backscattering from the external potential
causes an enhancement of the infrared divergence for repulsive internal
interaction and changes the singularity from the ordinary logarithmic to a
power-law singularity.

Interest in the properties of Luttinger liquid has recently been renewed, mainly in
response to the proposal of non-Fermi-liquid behavior of high-T, superconductors'
and in view of the development of microfabrication technology for inorganic one-
dimensional semiconductor compounds (“quantum wires”). In particular, the photo-
emission,” the Fermi-edge singularities,’ and the influence of the core hole dynamics
on them have recently been studied for the Luttinger liquid.

As is well known, the singularities in the x-ray response of metals* and some other
phenomena, e.g., the Kondo effect, have a common origin: the orthogonality catas-
trophe.” It is accordingly worthwhile to directly investigate the orthogonality catas-
trophe phenomenon for the Luttinger liquid. The Hamiltonian of the problem is

H=HLutt+ v,

Hyyw= ; {k(afaix—ataz) + U k) p (k) py(—K)}, (1)

V=0(—1e"" 2 [V(K)[pi(k) +po(K) ]+ V(2kp+K)afiay+he.},
k
where a, ; are the operators for the right and left fermions, p, , are the corresponding
density operators, U(k) is internal interaction, and V' (k) is the external potential
which is adiabatically turned on for a time 7. One must calculate the overlap (0| V)
between the wave functions at 7= — « and #=0, which correspond to the ground
states with and without the external potential in the limit 7— .

The interaction with the external potential [Eq. (1)] involves two processes: the
forward scattering from the external potential governed by its zero-momentum Fou-
rier component ¥ (0) and the backward scattering governed by ¥ (2ky). Ignoring the
backscattering, we obtain the Hamiltonian, quadratic in the density operators, which
satisfies the boson algebra.® This problem can be trivially solved by means of a
Bogolyubov transformation. In particular, the overlap integral is

log| (0| V) ps | = — (85/2m) log(€T), (2)
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2k X V(-2K FIG. 1. Diagram for the overlap, which is in the
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where €~ €y is a high energy cutoff, and 5.4 is the scattering phase which is modified
by the internal interaction (due to the renormalization of the Fermi velocity and due
to the strength of the potential): 8.4 = 8o/ 1 —a;6¢ = V(0)/vp, a = U(0)/7vg.

Equation (2) can be easily understood. Physically, the orthogonality catastrophe
is caused by the creation of electron-hole excitations with small energies in the process
of adaptation of the Fermi surface to an external potential. Accordingly, the density of
states of the electron-hole excitations, rather than the (single-particle) non-Fermi-
liquid behavior itself, is relevant to the orthogonality catastrophe. In the absence of
backscattering, only the creation of electron-hole excitations with a total momentum
close to zero is allowed. These excitations are sound waves and they remain well-
defined quasiparticles even if the internal interaction is taken into account. That is why
the response of the Luttinger liquid to an external potential in this case is qualitatively
the same as for the free fermion gas. The above consideration can be regarded as a
simple physical background for the results obtained in Ref. 3, where the backscattering
was ignored.

Let us now consider the backscattering effect which leads to the creation of
electron-hole excitations with a total momentum close to +2k. These excitations, in
contrast with the sound waves, are extremely sensitive to the internal interaction. The
model equation (1) is no longer exactly solvable. We must therefore expand the log of
the overlap integral in the external potential (see Fig. 1 and Ref. 4, for example):

1 dow dp 5
10g|(O|V)|:—EJ PR TymY J- 27 V@) [Im x (p,0), (3)

where y(x,t) = —i{T{p(x,t) p(0)}) is the exact correlation function of the total den-
sity. Near p= + 2k it can be calculated either by the bosonization method or ex-
tracted from Ref. 7 using the relation Im y=sign @ Im yg, where the retarded func-
tion yz was found in Ref. 7. It turns out that

Im y (2kp+pw) < 8(e* —*p?) (0 —2p?) 75,

where ¢ is the renormalized Fermi velocity, and g = | — (1—a)/(1+a). This
means that the density of states of these electron-hole excitations is proportional to
'~ %, but not to w, as in the usual case.* Thus, the backscattering contributes an
additional factor to the overlap integral:
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excitations relevant to the orthogonality catastrophe (for different
internal interactions g).
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1og| (0| V)5 | = — 7|V (2kp)/2mvp| *(€7)%, (4)

where the constant ¥ = 2 \/;(c/r)ng‘(3/2 — g/ — g), and 7 is the range of the
potential U(k).

For the repulsive interaction (g> Q) the orthogonality catastrophe not only sur-
vives but is even enhanced. The type of the singularity changes from a logarithmic to
a power-law singularity. In previous studies such a change was not observed.® This is
a special feature of internal correlations in the one-dimensional Fermi system and it is
caused by the enhancement of the density of states of electron-hole excitations near
+2ky (Fig. 2). Note that only the backscattering is crucial in this problem. In
contrast, for attraction (g <0) the backscattering does not contribute to the ortho-
gonality catastrope and it remains logarithmic due to the forward scattering processes
[Eq. (2)]. Strictly speaking, Eq. (4), which is a perturbative result, makes sense as an
intermediate asymptotic relation. It is a very difficult and amusing mathematical
problem to compute the true limit® 7— oo.

It is noteworthy that the function Im y is connected by the Kramers—Kronig
relation with Re y and, therefore, the anomalous orthogonality catastrophe [Eq. (4)]
is ““dual” to the anomalous Peierls susceptibility, Re y (2kp,w) « @~ %, found in Ref. 7.

In application of the orthogonality catastrophe to the problem of motion of a core
hole the fermionic system feels the change of the potential: AV=V(x)—V(x—a) (the
hole tunnels from the point x=0 to the point x=a). Since the zero Fourier component
AV vanishes, only the backscattering is responsible for the orthogonality and the
overlap integral is

log| 0| V) | = —y| V(2kp) /2705 | 24sin® (kpa) (7).

It is interesting that for attraction (g < 0) the core hole does not feel the ortho-
gonality at all. For repulsion (g>0) the orthogonality is generally very strong, but it
disappears for a=mn/kg. It seem that the core hole prefers to delocalize within some
self-corglsistent “Peierls drop.” This problem will be discussed in more details else-
where.

The unusual power-law singularity in the overlap integral obtained above requires
a reexamination of all the associated phenomena: the x-ray response, the motion of a
core hole, and the Kondo effect.’
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