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A new phase transition has been observed in BiFeO;. It is a transition from a
state with a spatially nonuniform cycloid structure to an antiferromagnetic
phase. This transition is induced by a high magnetic field and is accompanied by
a large increase in the electric polarization of the sample. The linear
magnetoelectric effect has been measured in BiFeO;.

Bismuth ferrite is a ferromagnet with high electric and antiferromagnetic order-
ing temperatures,'™ T,=1083 K and 7 y=673 K. Although the crystal symmetry of
BiFeQ; is consistent with the existence of a linear magnetoelectric effect, this effect
cannot be seen experimentally because of the cycloid antiferromagnetic structure.*
The quadratic magnetoelectric effect in BiFeO; has been studied in detail.”® Our
purpose in the present study was to learn about the magnetoelectric effect in BiFeO;
in high magnetic fields, up to 280 kOe, at which a phase transition can occur from a
spatially modulated structure to a uniform antiferromagnetic structure. We would
expect a significant increase in the electric polarization of the sample as a result of the
onset of a linear magnetoelectric effect.

Experimental results. The electric polarization P induced by a pulsed magnetic
field up to 280 kOe was studied over the temperature range 10-180 K. The BiFeO,
crystals were grown by spontaneous crystallization from molten solution. The crystal
habit is approximately cubic and corresponds to {001} faces (in an orthorhombic
arrangement). Small cubes were cut from the BiFeO; single crystals. The edges of the
cubes were oriented along the a, b, and ¢ axes in a hexagonal coordinate system (a is
the twofold axis). For the measurements of the ith polarization component (i=a, b,
¢), electrodes were applied by means of epoxy resin with a conducting filler to the
planes perpendicular to the i axis. The voltage (¥ o P) across the electrodes was fed
through a special amplifier to an oscilloscope. The triaxial input of the amplifier made
it possible (at K~0.99) to cancel the input capacitance of the amplifier, so the
sensitivity of the apparatus was improved to 107® C/m?. The high input resistance
(10"-10'Q) of the amplifier made the time constant of the measurement system long
(in comparison with the length of the magnetic field pulse) and prevented charge
drainage.

Figure 1 shows the field dependence of the longitudinal polarization in the case in
which the field is along the [001] axis. At H < H, the polarization is an essentially
quadratic function of the field. At H,=200 kOe, there is a sharp change in P(H),
which apparently means a destruction of the cycloid spin structure. This event should

69 0021-3640/93/000069-05$10.00 © 1993 American Institute of Physics 69



P10 C/m?

S
g
-5 T..
FIG. 1. Longitudinal polarization versus the
i strength of the magnetic field along the [001]
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be accompanied by the onset of a linear magnetoelectric effect and a renormalization
of the tensor of the quadratic magnetoelectric effect.

A similar field dependence was observed for the polarization in measurements of
the magnetoelectric effect along the c axis of the crystal with the magnetic field along
the g, b, and ¢ axes (curves 1-3, respectively, in Fig. 2).

The most abrupt changes in the polarization at H_. were observed in measure-
ments of the longitudinal magnetoelectric effect along the c axis. In the cases H||a and
H||b the changes in P are smaller and consist of two steps. The reason may be the
presence of blocks in the sample. As the temperature is varied, there is no qualitative
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FIG. 2. Polarization along the ¢ axis at 7= 18
K. The magnetic field is along the a, b, and ¢
axes (curves /-3, respectively).
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change in the P(H) curves. The magnitude of the polarization varies by less than 20%
over the temperature range studied, while the critical field remains essentially con-
stant. Measurements of P at 7> 180 K are complicated by the sharp increase in the
conductivity of the sample.

Discussion of results, Below 7., BiFeO; has the space group R3c—C5. The
antiferromagnetic order of type G can be characterized by ferromagnetic and antifer-
romagnetic vectors:

m=V;' > M, L=V;'Y (-1)~M,, (1)
J J
where M are the magnetic moments of the iron ions of the unit cell of the crystal, and
V, is the volume of this cell. To analyze the magnetic properties of BiFeO; we use the
reduced group Dg’d, which is obtained from the overall space group of the paraphase
of BiFeO; (T'>T,) by replacing all translations over an integer number of lattice
constants by the unit element. The sole electric order parameter is P, which is the
projection of the polarization onto the C; axis. The origin of the spatially modulated
structure in bismuth ferrite can be explained in terms of the existence of relativistic
Lifshitz invariants in the group D$; of the form a;Ld;L;, of which only one is
important for our purposes:

GP.(L,3,L,+L,3,L,). (2)

It is easy to verify directly that this combination is indeed an invariant of the DS,
group. The vector L can be written in the form L,= L sin 6 cos ¢, L,= L cos 0 sin ¢,
L,= L cos 8, where 6 and ¢ are the polar and azimuthal angles, defined in the usual
way in the coordinate system in which the c¢ axis is the polar axis.

Minimizing the free energy of the crystal, taking the Lifshitz invariant into ac-
count, we find the spatially modulated spin structure (SMSS) to be’
O0=qx+q,y, ¢=arctan(q,/q,), (3)

where the vector q=(q,, ¢,, 0) belongs to the star of wave vectors (rays) obtained
from an arbitrary g by applying all elements of the R3c group.

There is another solution which minimizes the free energy:
f=const, ¢=const. (4)

This solution describes a spatially uniform antiferromagnetic structure (SUAS). How-
ever, the minimum of the free energy corresponds to the SMSS. The energy advantage
over the SUAS is

AF(g) =Fsyss— Fsuas= —Aq"+K,/2 <0, (5)

where A4 is the inhomogeneous-exchange constant (the exchange stiffness), K, is the
constant of the uniaxial magnetic anisotropy, g=a/44, and « is the constant of
relativistic inhomogeneous exchange, which is assumed to be proportional to P, in
accordance with (2).

Let us estimate AF(g), using the parameter values*®
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A~ (2-4)x1077 erg/em, g=2m/A, A=620 A. (6)
Substituting these values into (5), we find AF =2 10° erg/cm>.

In a magnetic field, the free energy of the SUAS falls off more rapidly than that
of the SMSS; an SMSS-SUAS phase transition may occur as a result. The critical field
for this transition can be calculated by comparing the free energies of the SMSS and
SUAS phases. With the magnetic field along the ¢ axis [H= (0, 0, H,)], for example,
we have

Fsyas=K,—x. H/2, (7
where y, is the transverse magnetic susceptibility of the antiferromagnetic structure.
We assume (quite naturally) 8=m/2 in the SUAS phase.

Assuming K, <A4q’, and equating the free energies of the SMSS, (3), and of the
SUAS, (4), we find a rough estimate of the critical field for the SMSS-SUAS transi-
tion:

He=(44¢%/x, )2 (8)

The critical fields H, for H=(H,, H, 0) can be found from an expression like
(8) if m< (K, x, )12, where m, is the spontaneous magnetization of BiFeO;. Assum-
ing y, = 1073, and taking the value of Ag? from (6), we find H=(2-3)X 10° kOe, in
agreement with the value found from experimental data.

The polarization vector P can be written
P=Py+a;;H;+1/28;;HH,, (9)

where P= (0, 0, P) is the spontaneous-polarization vector, and a;; is the tensor of the
linear magnetoelectric susceptibility,

—aL, —~a4L,+aL, —a)L,
a= alLy+a4Lz ale aZLx . (10)
—as3L, asL, 0

The exact expressions for the components of the tensor B;;; are quite lengthy. As
examples, we write out three components of this tensor, emphasizing their angular
dependence:

Bixx="b1+b, sin* 0 cos 2¢ by sin 6 cos 6 cos ¢,
B,yy="b, sin® 0 sin 2¢ + b, sin 6 cos O sin @, (11)
B..;=bs+ bs sin’ 6.

It follows from (10) that when the cycloid structure is destroyed by a magnetic
field, a linear magnetoelectric effect should arise. This effect vanishes in the original
structure. In addition, there should be a renormalization of the tensor of the quadratic
magnetoelectric effect, which leads in turn to the abrupt change in the polarization
seen experimentally at H=H,.

In conclusion we would like to repeat that this study has revealed a new phase
transition in the magnetic ferroelectric BiFeO,, from a cycloid spin-modulated phase

72 JETP Lett., Vol. 57, No. 1, 10 Jan. 1993 Popov et al. 72



to a uniform antiferromagnetic phase. This transition is induced by a magnetic field
and is accompanied by a sharp change in the electric polarization. We attribute this
effect to a contribution of the linear magnetoelectric effect to the polarization of the
crystal.
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