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A set of equilibrium states which a plasma may reach as the result of turbulent
relaxation is found. These states correspond to solutions of the equation

for an extremum of a Lyapunov functional. They are characterized by a reversal
of the current at the periphery.

Woltjer! and Taylor? have concluded that a small-scale turbulence causes a
plasma to relax to equilibrium with a relative minimum of the energy integral E, and
then the turbulence decays. The conservation of the integral of the magnetic helicity,
[hd’x, where h=A-B and B=curl A, has been proposed as a condition for the
minimum. Here A is the vector potential of the magnetic field B. The minimization
occurs because the dissipation of energy is rapid in comparison with that of the helicity
in the case of a short-wave turbulence. As a result, the relative energy minimum
becomes an attractor. In the course of this relaxation, however, the plasma pressure p
vanishes since there are no limitations on a minimum in terms of p.

A new first integral, I ,= [hf(p"*/h)d*x, which contains the pressure was pro-
posed in Refs. 3 and 4 as a condition for a minimum of E and p. Here £ is the adiabatic
index of the plasma, and f is an arbitrary function. Under this more restrictive
condition the plasma can relax to a state in which p has a significant maximum at the
center of the plasma. In other words, a turbulent relaxation realizes a minimum of the
Lyapunov functional L=E+1,, where E= [[pv*/2+p/(k—1)+ B /87)d’x, p is the
density, and v is the plasma velocity.

These integrals were chosen because they are smooth with respect to the argu-
ments A, p, v, and p, so the first and second variations of L are also smooth func-
tionals. In the case of a short-wave turbulence, in the absence of external sources, the
quantities v* and p relax most rapidly, because they are sensitive to the turbulent
viscosity and to the thermal conductivity. The quantity B>= (curl A)? relaxes more
rapidly than A=A - curl A, which satisfies a continuity equation* and which contains
smaller derivatives. The ratio of the amplitudes of the corresponding fluctuations of
these quantities is thus larger than a/A, where a is a length scale of the plasma, and A
is a length scale of the turbulent fluctuations. As a result, if the plasma is in qua-
sisteady state near a minimum of L, a comparatively rapid decrease in v, p, and B?
sends the plasma into a state with a minimum of L, while there is almost no change
in . At the L minimum the plasma becomes stabler,*” and the turbulence level should
decrease. The extremum 8L =0 leads to the relaxed-equilibrium equation®

curl B=—-2GB—VGXA; G=G(h); B=curl A, (1)

Here G is defined in terms of f. It gives the steady-state pressure as a function of the
helicity:
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FIG. 1. Typical profiles of g in axisymmetric
\ plasma confinement systems. /—Tokamaks;

2 2—stabilized  pinches;  3—reversed-field
'\ pinches.
\

p(h)= fh(&G/Bh)dh/47r+const. (2)

System of equations (1), (2) singles out a very limited subset of the set of plasma
equilibria. The stability of such equilibrium states can be analyzed in the way that we
would analyze the stability of ordinary equilibria, i.e., in the linear approximation.’ In
the case G=const, the current is parallel to B according to (1), and there is a
force-free state. The corresponding equation has been solved analytically by Taylor.
We find other solutions of (1) numerically in a cylindrical geometry. For this purpose
we assume that all quantities depend on the cylindrical radius 7 alone. At r=0 we set

A,=¢, A4,=0, B,=1, B,=0, curl,B=1, G=—1/2. (3)

Here v is a constant which, along with G, determines the structure of the equilibrium.
Conditions (3) introduce units of magnetic field and length, B, and B,/curl,B, at the
magnetic axis. It is convenient to replace G(4) by a function of r: G=g(r)/2. Equa-
tion (2) then becomes

pzf h(3g/dr)dr/8m, Ap/dr|,_,=O. (4)

We impose the further requirement that the plasma be cold and force-free at its
boundary. These conditions can be satisfied by setting dg/dr|,_,=0 in systems in
which A? increases toward the boundary [in solutions of (1) of the tokamak type] or
in which we have A|,_,=0 (in pinches). To cause the current to vanish at the
boundary of the tokamak-like solution of (1), we should also require g|,_,=0. As the
boundary is approached, g thus vanishes more rapidly than dg/dr does. It can be seen
from (1) that the result is a change in the sign of the toroidal current in solutions of
this sort.

By specifying various values of g and 1 we can find solutions of (1) in the form
of three fundamental axisymmetric configurations which are encountered experimen-
tally: a tokamak, a stabilized pinch, and a reversed-field pinch. The primary distinction
among the three is the profile of the safety factor ¢ (Fig. 1). A stabilized-pinch
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FIG. 2. Profiles of (1) ¢, (2) curl B, and (3)
curlB of relaxed equilibria in a tokamak with
a convex pressure profile at the center, in the
dimensionless units of (3). The condition
¢g=28.6 holds at the boundary.
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solution of (1) has been studied in Ref. 4 and other papers. Solutions of (1) in the
form of a reversed-field pinch have a high current density at the boundary, which is
not altogether convenient for fusion purposes.

Let us consider tokamak solutions of (1) in the case in which the pressure has a
parabolic profile at the center. In the simplest case we would have g= —[1— (r/a)*.
In this case the profiles of the magnetic field and the pressure differ only slightly from
their usual profiles. Figure 2 shows a profile g=rB,/RB, for y=—0.2, a=1, and
R=1.5. There is a steep rise near the boundary. This rise is caused by the change in
the sign of the toroidal current in this region; this change in sign leads to a partial
screening of the poloidal field (Fig. 2). At the axis we have g=2/R and hA=1 accord-
ing to (3). The ratio of the pressure to the magnetic pressure at the axis is $=0.22 in
this example. The value of 3 increases with decreasing .

Let us consider a flatter pressure profile—a cubic parabola—near the axis. This
would be the case with, for example, g=—[1—(r /a)3]2. Near the axis we have a
force-free configuration, in which g falls off with distance from the axis according to
the analytic solution of Ref. 2. Figure 3 shows the results of a solution of (1) with
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FIG. 3. Profiles of (1) ¢, (2) curl B, and
Them, (3) curlyB of relaxed equilibria in a toka-
\\' 2 mak with a flat pressure profile at the cen-
~'\\ ter. The condition g=3.5 holds at the
S boundary, while ¢ has a minimum at
‘\\. r=04.
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= —0.4, a=2, and R=3. Here ¢ has a slight minimum at »=0.4. There is also a
more pronounced reversal of the current. At the center we have a paramagnetism, and
at the edge of the plasma we have a diamagnetism. At the axis we have §=0.47. Such
a profile looks unstable. However, the experiments of Ref. 6 yield a g profile similar to
this (when we allow for the experimental errors). Under the conditions described in
Ref. 6, the equilibrium was force-free, at both the edge and center of the plasma. The
g profile was thus not monotonic.

Consequently, the circumstance that, according to Holm et al.,’ the stability of
the equilibrium corresponding to an extremum of the Lyapunov functional can be
analyzed by a linearization method means that we can extend relaxation theory to the
study of tokamaks. It thus becomes possible to dramatically reduce the uncertainty in
the choice of the best equilibrium parameters. In relaxed states of this sort, described
by Eq. (1), the field is force-free at the edge, as is seen in a change in the sign of the
current and in a steep increase in g. According to Ref. 7, where the conditions for a
kink instability were found, the presence of a region with a negative current (more
precisely, a region with a positive current gradient near a boundary) substantially
improves the stability.
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