Doping-induced exciton transition
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In a semiconductor which is stable with respect to an exciton transition in the
absence of doping, an exciton phase may arise upon doping because of an
interaction of excitons with electrons.

The ground state of a semiconductor with a band gap E, smaller than the binding
energy of an electron and a hole (i.e., of an exciton), E,, is known to be unstable with
respect to a transition to a state of an exciton insulator.'” In the present letter we
adopt a two-band model of a doped semiconductor, and we assume £,> E_. In the
absence of doping, the ground state of such a semiconductor is stable with respect to
the formation of excitons. However, if we assume that the band gap is smaller than the
sum of the exciton binding energy and the binding energy of an exciton with an
electron, E, <E_4J (J is the binding energy of an exciton with an electron), then the
presence of even a single free electron in the system will make the creation of an
exciton from vacuum favorable from the energy standpoint. A bound state of this
exciton with the electron forms. This entity has a charge equal to the charge of the
electron. If the repulsive interaction between excitons is sufficiently weak, this entity
may cause the formation of yet another exciton. The entity may form a more complex
bound state with this new exciton, and so forth. As a result, a large complex of a single
electron and a large number of excitons may arise. The exciton creation process will be
stabilized by the repulsion of excitons which occurs because an exciton, consisting of
two Fermi particles, is not a Bose particle.>* The qualitative arguments above are valid
if the size of the exciton is small in comparison with the radius of the electron-exciton
bound state. This condition is met if J€E, (for a negatively charged hydrogen ion H™,
the ionization potential is’ J~0.75 eV<E,). Below we assume that J is indeed small in
comparison with E,.

In the present letter we analyze the conditions for the onset of an exciton con-
densate induced by doping. We discuss 2D and 3D systems. This model is of interest
in connection with the problem of high-T, superconductivity®® and also for reaching
an explanation of the superconducting properties of doped semiconductors.’

We consider a two-band model of a doped semiconductor with a hole dispersion
relation €,(p) and an electron dispersion relation €,(p):

€(p)=—E/2—p/(2m;), €.(p)=E,/2+p*/(2m,). (1)

We write the partition function of this system as the functional integral

Z= fexp (iS)d¥ DY (2)
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S=fd12 fdx\l_//-(x,t){i&,—ej(—N)+y}‘I/j(x,t)
i

—1/2J-dtz 2 J‘dXdyli;Ei(x:t)\yi(x;t) Vx‘y\l_lj(y’t)wj(y,t); (3)
i

where S is the action of the system, W are the Grassmann electron fields, / and j specify
the bands (e and k), V(r) =€*/ (egr) is the Coulomb potential, € is the static dielectric
constant of the semiconductor, and u is the chemical potential of the electrons in the
case of doping into the upper band.

We integrate (2) over all the fields ¥, and over those fields ¥, which vary over
length scales smaller than the average distance between doping electrons. Introducing
collective variables which describe the motion of the exciton as a whole, and which
vary slowly at the exciton scales, we find the effective action for the system of doping
electrons which are interacting with excitons produced from vacuum by the same
interaction (the procedure for deriving the effective action is described in detail in Ref.
10):

S=S80+Sex+Sei+Sel-ex s

So= 2 a(p)[e—p*/(2m,) +pla(p)+ X B*(k)[0—A(k)] B(k),
) 3

1
Sa=—3 2 V§ dp)apa(p~)a(pi+9),
qr

Sex= —gz B*(p,) B¥(p,) B(p,—q) B(p;+9),
qr

Sa=— 2 7(Q)@(p1+9)a(py) B*(p,—q) B(py). (4)
ap

The fields a describe the electron subsystem, the fields B describe the exciton
subsystem, A (k) =E,—E[1-A(pra B)d]+k2/ (2M) is the exciton dispersion relation
in the case Ay=E,—E.>0,a p=Hh€,/(me?) is the first Bohr radius of the electron, and
pr is the Fermi momentum. The expression for A(k) incorporates the circumstance
that at doping densities prap<€1 the exciton binding energy falls off linearly with
increasing electron density. In this case the constant 4 is ~1. The quantity d is the
dimensionality of the system, M =m,+m, is the mass of the exciton, V;‘f is the
effective Coulomb potential of the doping electrons, and y(g) is the potential of
interaction of the electrons with the excitons, which is an attractive potential:

e2

K%/ (2m*)+E,—E'

d%k
y(q) ~— f(z—m—d(kd)(k—q,d)V(k)V(k—q) (5)

Here m*=m,M/(m,+M), and |d| ~eay is the matrix element of the dipole moment
of a transition from the ground state to the first excited state of the exciton. Since y(q)
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FIG. 1.

depends only weakly on the momentum at gap < 1, we will ignore the g dependence of
y below. The amplitude for the scattering of excitons by each other, f, is determined
by the repulsion of excitons at short range; it is*>*

F=202m) f dkdp[W3(p) ViWo(p+K) — W2(p) W2(p+K) | ~Ead,  (6)

where W, is the wave function of the ground state of a hydrogen-like atom.

If the derivation of action (4) is to be valid, we must assume that the density of
the exciton system is small: n.,a3<1. We assume that the strength of the attraction
between electrons and excitons is sufficient for the formation of a bound state even at
d=13. In this case the vertex of the electron—exciton interaction, ¥, is greatly renor-
malized, and the overall vertex is determined by a sequence of ladder diagrams (Fig.
1). Summing these diagrams, we find

v

l—ynel—ex(P) ’ (7)

rp)y=
where Il ., is expressed in terms of the electron Green’s function G, and the exciton
Green’s function D,, by

dd+1k
nel—ex(P)IiJ-WGel(k)Dex(P—k) (8)

The integral in (8) diverges at large momentum, and the integration must be cut
off at momenta k ~ 1/ap, since the effective radius of the potential y is on the order of
ag.

In general, the exciton—exciton interaction vertex f is also renormalized, and it
must be replaced by the complete amplitude for the scattering of an exciton by an
exciton, F. The amplitude F is determined by a sum of ladder diagrams if the exciton
density is small, 7,,a%<1. The renormalization of the exciton-exciton vertex is impor-
tant only at d=2.

As a result of the renormalizations, the electron—exciton interaction vertex ¥ must
be replaced by T, and the exciton—exciton interaction vertex f by F, in the effective
action for the electron-exciton system, (4).

Let us consider the classical equation of motion for the exciton fields B, which
determines a saddle trajectory for these fields:
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(ia,—/l(O) +W”2) B(r,t) —F| B(r,0) |B(r,t) =0. 9)

The quantity = in this equation is represented by the diagram in Fig. 2. A nonzero,
static, homogeneous solution of Eq. (9), which determines an equilibrium exciton
density, exists if

A(0)+ 2 <0. (10)
In this case the equilibrium exciton density 7, is given by
ng= _/_1_(%2 . (11)
Let us consider the case d=2. Calculating I[,_.,(P), we find
m*
Myy_ex=—7— In[ E/max {py/ (2m*), 4} ], (12)

where po=max{pp, (1, M) "}, and p.,=n,F is the chemical potential of the excitons
under the condition that a condensate exists. The expression for the renormalized
electron—exciton vertex is

27
m* In [max{py/ (2m*),Ao}/J]’

[(Py=— (13)

where J=E_exp{— (2n/m*|y|)} < E,, is the binding energy of an electron with an

exciton. The renormalized amplitude for the scattering of an exciton by an exciton, F,

which is determined by a sum of ladder diagrams, can be written as follows in the d=2
1

case:

_ f 47
A+ fE 0 [E/p,] M [E/pe]

(14)

The expression for 2 (Fig. 2) takes its simplest form at py> pp. As we show below, this
condition holds in the region of maximum density of the condensate:

5=Tn,, (15)
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where n, is the density of doping electrons. The expression for X at py~pr is not as
simple, but there is no qualitative change in the picture.

Analysis of inequality (10) shows that the equilibrium exciton density n; exists
under the condition ex<€p*~17 only for A;<J. In this case the maximum exciton
density ny is, in order of magnitude, ny~m*JIn{E,/J}. In this case we have
Yex ~m*J/M and p,~ (m*J)V2.

Under the condition €< J the system is unstable with respect to the formation of
bound states of electrons and excitons, and it cannot be thought of as consisting of two
homogeneous interacting subsystems.

In the d=3 case, the renormalized vertex of the electron—exciton interaction is
217
—(2m*)¥?[ Jmax{py/ (2m*), Ao} — /1’

where J= (4/7%)[1 — (7*a y/m* | y| )’E.<E. is the binding energy of an electron and
an exciton. A bound state exists if m*|y|/ (7a > 1 If the system is to be stable, the
denominator in (16) must be positive.

rP)= (16)

Inequality (10), which is the condition for the existence of an exciton condensate,
holds at doping densities for which we have ep"<er<er <E, and €p"
= max{J,4p]. In this case the equilibrium exciton density found from the solution of
Eq. (11) is, in order of magnitude, ny~ (m*/M)1/3€F/f.

A large scattering amplitude I', which makes an exciton phase possible, may
result from a scattering by both a resonant level (J<E,) and a shallow quasiresonant
level. The resulting densities of the exciton phase satisfy the condition 7ga% <1 in both
the d=2 and d=3 cases.

In the region in which an exciton condensate exists, the electron—exciton system
constitutes an electron liquid which is interacting strongly with an exciton subsystem.
As a result, there is a strong effect on the properties of the electron Fermi liquid in the
normal state, and there is the possibility of a nonphonon superconductivity for this
liquid. A further analysis of the properties (including superconducting properties) of
such a system warrants a separate study.
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