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The fluctuational resistance SR in SIS and SIN tunnel junctions at 7> T, is
calculated without the use of a perturbation theory in the transmission.

In each case, SR has a maximum, whose position depends on the transmission
of the barrier and on the damping in the spectrum of excitations.

In the high-T, superconductors of the BSCCO type, the resistance R along the ¢
axis has been observed'™ to increase with decreasing temperature 7. When the su-
perconductor has been in the superconducting phase, the increase in R has occurred at
temperatures down to a certain T,,; below T, the resistance has decreased sharply,
vanishing at T'=T,. Ioffe et al.® have suggested an explanation for the nonmonotonic
R(T') behavior in the layered high-7", superconductors. According to this idea, the
peak in R(T') stems from superconducting fluctuations, which can be classified into
two types. Fluctuations of one type lead to a decrease in the density of states at low
energies because of the fluctuational formation of a virtual gap.® As a result, there is
an increase (6R pp¢>0) in the resistance of a Josephson tunnel junction or of a layered
superconductor with a Josephson interaction between layers. The fluctuations of the
other type lead to a contribution of virtual Cooper pairs to the conductivity (an
Aslamasov-Larkin correction,” 8R ;; <0). These fluctuations increase more rapidly as
the difference (I"— T',) decreases, but they contain only a power of the transmission.
Since these contributions differ in sign, in magnitude, and in temperature dependence,
a maximum forms on the temperature dependence of the fluctuational resistance
SR(T)=0Rpps+6R ;. The value of SR was calculated in Ref. 5 by the method of
Ref. 7, except that the electron spectrum was assumed to be approximately two-
dimensional (a corrugated cylinder). Although the fluctuational mechanism for a
maximum in R(7T") should operate in layered superconductors, the applicability of this
mechanism to a material of the BSCCO type is not obvious, since an increase in R(T)
with decreasing temperature is also observed in nonsuperconducting BSCCO samples.
It thus becomes necessary to study this mechanism in more detail, in (for example)
tunnel junctions. No previous calculation of 3R for an SIS tunnel junction has taken
fluctuations of both types into account. Varlamov and Dorin® calculated only the
component S8R p,s for an SIS junction; that component leads to an increase in the
resistance. Calculating the complete fluctuational resistance requires going beyond a
perturbation theory in powers of the transmission.

. Inthe present letter we use the exact joining conditions for the Green’s functions
G at the barrier to calculate the fluctuational resistance of SIS and SIN junctions,
8R(T), at T> T,. The calculation method can easily be generalized to the case of a
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FIG. 1. Fluctuational resistance SR = SR/ SEO versus the “temperature” t=(7T--T_)/ T for various values
of the parameter € =1.44¢,/y. I—0.1; 2—0.2; 3—0.3. The inset shows the system under discussion.

periodic SISI... system, which can be used to model a layered superconductor in which
the frequency of jumps between layers is small.® (For example, in a BSCCO high-T,
superconductor at 7> T, the motion of the electrons along the ¢ axis is a hopping
rather than a band motion.) Boundary conditions on G in superconducting systems
with a barrier have been derived by Zaitsev’ in general form. These conditions were
simplified in Ref. 10 for the dirty limit (these conditions were subsequently derived in
Refs. 11 and 12 also). These conditions were used in Refs. 13-15 to calculate the
conductivity of SININ systems'*'* and SIN systems' at T< T .. Going beyond the
scope of a perturbation theory in the transmission had made it possible to explain the
anomaly (the peak) in the conductivity at a zero bias voltage which has been observed
in S-Sm and S-Sm-S junctions (S is a superconductor, N a normal metal, I an
insulator, and Sm a semiconductor). An exact approach is also required for calculat-
ing the fluctuational resistance in tunnel junctions.

Let us examine an SIS (or SIN) junction (see the inset in Fig. 1). As in Ref. 15,
we deal with the dirty case (/< §) and we assume that the electrode thicknesses a and
b are small (d,,<§r= D/T). Taking an average of the equations for the Green’s
functions G over the electrode thicknesses, and imposing the boundary conditions, °
we then find an equation for the Green’s function of electrode a:
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D2, (GO, G)o+€,[Ga,Gy] _(6,0,G,+3,G.6,) +il A1) G~GA(2) ],
HV(G—GV (') g= L. (1)

Here D, is the diffusion coefficient, 8, =(4,,0,d,) and €,= D,/ (rld),. The coeflicient
r characterizes the barrier transmission and is related to the resistance of the tunnel
junction per unit area in its normal state, R= (7i/20), where o, is the conductivity
of electrode a. The term on the right side of (1) describes the interaction with pho-
nons. An equation for G, is found from (1) by interchanging the indices @ and b. We
can find the correction to the resistance by seeking the response of the system to
fluctuations of the order parameter, A(x,z,t) This approach was taken in Ref. 16 to
find 6R in a homogeneous system and in Ref. 17 to determine SR of a microbridge
with a direct conductivity. In first order in A we find from (1) the following expres-
sions for the retarded (advanced) Green’s functions:

Gii (eesg) =Gl "8(e—€' —0), GI=A (09l +4,(0.0)80.

Here aR{¥=(N, /B)R“) ,BR(A)—ze o/ B, NBD — t[(ete')/2%ia,,(9)/2),

a,5(q)= 26,, »t+ (Dq Vo Y=Tc 4277 Uis a coefficient describing the damping of
superconducting fluctuations, and BRO—(N AV YR 4 e +€p The second-order cor-
rection can be found easily from the orthogonality relation; it is expressed in terms of 17
Gla(',f) We find the correlation functions (A,A,) and (A A,,) by substituting Gﬁ,‘f) into
the condition for self-consistency with Langevin sources, which describe
thermodynamic—equilibrium fluctuations. For brevity we reproduce here only the ex-
pressions for the correlation functions in the case of identical electrodes (an SIS
system):

(A (0,9)A(0',q")) =Kf[?%( —L(w,q)L(0",q"))/[ D(w,q) D(0',9")],
(A (0,9)Ap(0',q")) = — K fli€r( L(0,9)

+L{e’,¢")) /[ D(w,g) D(w',q") ]. 3

Here 60—2€a/T0—26b/T0, To=8T/m, K;=2m6(0+0’ 8,07/ (2vg), vp=ppm/
(277) is the density of states, L(w,q)= w+t(a,/T0 Kg), ko=In(T/Ty),

d,=a/Ty=6++7, §=Dg/T, 7=y/Ty, D(wg)=L(wq)+é€.

We now write equations for the Keldysh functions G=GRF —13'(;”4, ie., we take
the (1, 2) element of Eq. (1), multiply it by &,, and calculate the trace. Taking an
average over the fluctuations, and integrating over the energy, we find the equation

| detDa8F,~(GR.F G~ (FROFFH,1 —e(A ()} =0, 4
Here A(e) =GRF G‘+GRFQGA F GGl —GEGRF ,+ FRFRF .+ F FAF{ + FRF F}

+F,,F,,F,,, FRF“)__(GMGA,,), GR(A)) +14+(CG R(A)), etc. The function F, is
the distribution function in electrode @, which determines the electric potential Va:

V,,=(1/4)f de(GR—G*),F,. (5)
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Equation (4) is the continuity equation for the current in electrode a. The first term
is the divergence of the current averaged over the thickness; the second is the influx
(outflux) due to the tunneling of quasiparticles through the barrier and the contribu-
tion of the proximity effect.!*!®> We have omitted from (4) the distribution function F b
in electrode b under the assumption that the potential is zero there and under the
further assumption that the barrier resistance is large in comparison with the resis-
tance of the electrodes. The length of the junction, L, is thus not very large:
Lely={[(od); 14 (ad) b 1]/RD}‘ V2 where Iy is a length scale of the spatial variation
of the potential difference along the x axis in the normal state. Setting GRM = 1,

FRAD =0 in (4), and integrating (4) over x from O to L, we can express the junction
resistance at 7> T, (per unit length in the z direction) in terms of €,,: Ry+Rn/L
=(rl/20),/L=(rl/20),/L. In a similar way we find the dimensionless resistance of
the junction due to fluctuations:

aie'E[R(T)—RN]/RN=—(8V)“‘f de(84(e)), (6)

where 64=A4—Ay=A—4F,, F,=[tanh(e+ V)B—tanh(e—V)B]/2.

Equations (2)-(6) determine the fluctuational resistance of the junction, SR, in
a fairly general form. We find this resistance under the assumption that the typical
tunneling energies €, , are small in comparison with T'. It follows from the expression
for 4(€) that there are two types of fluctuations, which make different contributions
to 8R. The fluctuations of one type, which might be called * regular,”17 arise from
terms in A which have poles in one € half-plane, i.e., from terms of the type GXF, and
FfaF,,F ia The contribution of these terms reduces to essentlally a change in the
density of states as the result of fluctuations: v~ (8GX,—8G4,). The fluctuations of
the other type, called “anomalous,”'” arise from those terms in 4 which have poles in
different € half-planes, i.c., from terms of the type FRF Ff.. These terms contain an
extra power of €,,, but they increase more rapidly as 7— 7. An analytic expression
can be derived for 8R in the case €, ,< T .. That expression is quite unwieldy, so we will
discuss here only the case of a low transmission, with €, ,<€y,, (T —T,). In this case
we have

8R=8Ro[ p,(t) — pan(D)]. (7

Here 5R,=84¢(3)/(mpld) =~10.2/(p%ld), p,(t)=—In tis the regular part, p,,(z)
=¢,/t is the anomalous part, €, =1.44¢y/y, t=(T—T,)/T,and T ,=T ,(1—7) is the
critical temperature renormalized because of damping. The maximum of 6R(¢) is
reached at ¢,,=€;; t,, depends strongly on y. Figure 1 shows a plot of 6R(t) We see
that the maximum of 6R is defined most clearly in the case € <1.

Let us estimate some typical parameter values. For conventional superconduc-
tors, the energy €, is conveniently written in the form €=37THj/ (5kpT, emd).
With d=1000 A, T,=4K, j.=10° A/cm? and 7,=10""" s, we find €,=0.015 K and
y=0.1 K. The maximum of §R(T) is reached at 7,,=1.227 . For the case of the
BSCCO high-T, superconductors, €, can be written in the form €,= (#D/d*Z), where

=#l/2d is an anisotropy parameter. With Z~10°, d=10"" cm, /=10"° c¢m and
7,=10"'% 5 we find €;~0.2 K and y=10 K. We then have T,,=1.03T. Since we are
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probably dealing with the pure case in the case of high-T, superconductors, the esti-
mates for high-T, superconductors are valid only in order of magnitude.

In the case of an SIN junction, it can be shown that the maximum of SR (1) is
reached at ¢,,=¥, if the condition € >7% holds.

I wish to thank A. Varlamov for furnishing Refs. 4 and 5 before their publication.
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