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The conductance of the saddle-point potential with a short-range impurity in
a noncentral cross section of the channel has been calculated for an

arbitrary number of transverse modes. A series of downward dips in the
conductance versus the Fermi energy has been observed below each threshold.
The crossover from resonant dip to a peak near the threshold has also

been observed.

Considerable interest has recently been focused on the study of the effect of a
single impurity on the conductance of a quantum ballistic microconstriction.! Previ-
ously we have shown? that in the realistic model of a saddle-point potential a short-
range impurity located in the central cross section of the waveguide causes a crossover
from a resonant dip to a peak near each threshold. We have also investigated the case
of a noncentral location of the impurity but only for a pinch-off microconstriction.

Here we develop our model for an arbitrary number of transverse modes, because
it is important from both theoretical* and experimental® points of view.

The main features of our model’ can be summarized as follows. An impurity
changes the conductance of a quantum wire because it scatters the modes which are
transmitted through the channel. For a short-range impurity at the point 7, the
scattered field is

Ge(r,
¥ (r)=—2my°(ro) G 7o) (H

De(r 0) '

Here G, is the Green’s function of the confining potential of the microjunction,
¥°(r) is the incoming field, and D (r,) is the denominator of the scattering amplitude.
The latter one is expressed in terms of the near asymptotic behavior of the Green’s
function:

, 1 [r—r'|
G.(r,r )|,,,,ﬂ,o=2—7; K. (ry)—In p s (2)

and
Df(rO)=A+Ke(r0); (3)

where A=In(d/a), a is the scattering length, and d is the width of the microjunction.

The saddle-point potential is
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x>y
V(x,}’)=2—m—d§ arik (4)

Here L is the length of the channel, d is on the order of the Fermi wavelength A,
and L>»d. The variables can be separated for this potential, and thus the Green’s
function and also its near asymptotic behavior can be calculated.

The waveguide modes in this potential are

WE,,(X,}’)=¢I,(J’)E(—€”,:E§), (5)

where ®,(n=0,1,...) are the oscillator functions corresponding to the energies E,
=#Q(n+3), #Q=#/md*, E( —€,,£) are the complex Weber’s functions (according
to the definition taken from Ref. 6), €,= (E—E,) /%0, #iw=#/mdL, and E=x(2/
Ld)V?. When there is no impurity, the conductance of the microjunction is’ (in units
of 2¢*/h)

Gy= gorz(e,,), (6)

where 1‘2(6)=l—rz(e)=[1+exp(——2flre)]_l is the transmission probability. There-
fore, for a long channel G, versus E has a series of plateaus with a width #Q and a
height G+ N (N is the number of transmitted modes), separated by steps of width
fieo.

Using Eq. (1) for v, we can take into account the effect of the impurity scat-
tering on the conductance. We have also introduced a dimensionless oscillator wave
function ¢,(y) =(md)"*®,(y) and the parameter a=(L/d)"*=(#Q/fw)">. We
can then easily obtain the transmission coefficients?

a
Tn—-n’=_it(€'n) 6nn’ D ( ¢n(y0)¢n (,Vo) \/— t(en )

XE(—€y,80) E(— €y, —8&p) (7)

and compute the conductance according to the Landauer formula G=2,,,|T,_,,|%in

the presence of the impurity. In order to simplify this procedure we isolated” in D, the
contribution BH(e,&y) (B =a¢,2V) from the threshold mode n=N and the contribu-
tions p, (real part) and g, (imaginary part) of other modes n=%N:

De=A=p.+ige+BH(e.E), (8)
where the complex function H by definition is
1
H(e,£y) =P(€,50) +iQ(€,80) = t(€)E(—¢,E0) E(—€,—&p) 9
and e=¢€,. We have used also the convenient representation of the complex Weber’s
function E(—¢,,+£&;) via the real Weber’s function® W(—e,,+£;). Then the real

part P(e,£,) and the imaginary part Q(€,&,) of H(e,&p) can be easily separated:
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1
P(6’§0) =ﬁ r(e) '2W(—6’§O) W(—ey_§O)s (10a)

1
O(eLo) =15 t(e)[WH(—e8o) + Wi —€,—£o) ] (10b)

Substituting Eq. (8)-(10a,b) into (7), we can show after lengthy but direct algebraic

manipulations that the expression for the conductance between” Ey_; and Ey +1

2(e) (pe+A)—P(e)g
| D|?

(11)

surprisingly describes the situation with a noncentral impurity. Now it is obvious that
the affect of the position of the impurity along the channel on the conductance is fully
described by the function H(e,&,). The bound states are defined” as scattering ampli-
tude poles £—iT", which are roots of the equation

ReD =A+ReK . =A+p.+BP(eép) =0. (12)
The assumption of the smallness of the width I" allows us to write it in the form
'=c! ImK, (13)

where c=d/deReK_|._;. On the other hand, ImD,(r,) is proportional to the fluxes
from the 8-function located in 7y:®

ImD(ry) =q.+BQ(€,60) =27[J, «n(r0) +In(70) ). (14)

We can show that the flux Jy (), carried by the threshold mode N, can be divided
into two parts:

1 1
Jﬁ:arﬁfzt(e) W —e,+£). (15)

These parts correspond to the fluxes to the right (J%) and to the left (Jy) (here we
let £,>0). Using Egs. (8), (9), and (10b), we decompose the total width '=T,,
+T; 4T, where the width I',,=c g, is due to the decay into the continuous
spectra of above-barrier modes n <N (the mixing of modes) and the widths
T =c"'-2nJ% are due to the tunneling of the threshold mode N through the saddle-
point potential (I";”) and the potential of the impurity (I';"). Below and near the
threshold E, it is possible to expand D, near £ and, using Eq. (10a) and (12), express
Eq. (11) in the form

G P(e)(4T; T, —T%) 6
=Nt (16)
Main result. Let us first analyze the behavior of the conductance below the threshold
E), and above the potential energy €,= — £%/4 which corresponds to the location of the
impurity (i.e., €; <€ <0). (Note that all bound-state energies are defined with respect
to the energy €;). We see that the function K, oscillates in this energy interval (the
upper part of Fig. 1). This fact leads to the existence of a set of bound states, because
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FIG. 1. The dependence of ReK, (the broken line, upper plot), ImK, (the solid line, upper plot), and the
conductance G (lower plot) on the energy below the threshold 2. The impurity position is determined by the
coordinates y,=2 and £,=6, a=>5.

the condition (12) can be satisfied several times. To derive their energies and widths,
we introduce a convenient notation = | €| =13 || —§2/4) and expand Eqs. (10a)
and (10b) into an Airy function®

P(e)=v2m|e| VCAI(—1)Bi(—1), (17a)

1
Q(€)=V2rm|€| —‘/6(2 exp(—2m|€| )Biz(——t)+Ai2(~—t)). (17b)

We will search for the energies of the bound states near the zero values of 1, of the
Airy function, determined by the equality Ai(—~¢)=0. Here n=1,2...M and M is
equal to the integer part of £3/4m+ 1. We can then substitute Eq. (17a) into Eq. (12):

A
Ai(—t,,)Bi(—t,,):Jzﬁig l€o] /8. (18)
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Here we omitted pz due to its smallness. Expanding the left side of Eq. (18) in a
Taylor series up to the second term and using Wronskian relation® WlAi(z),
Bi(z)]=7"", we obtain the following expression for the energies of the bound states:

- £\ A&
e,,=—(7) t”+37' (19)

This type of bound states exists for both signs of the impurity potential. The widths of
these bound states can be easily calculated:

9e 1 §0
m="5 B > (20a)
1 £\
F,‘:Z 1rBi2(—t,,)(5> exp(—2m|€|), (20b)
1 A 2 go 4/3
+_ — ity
F, —m (B) (2) . (ZOC)
These widths are small if we assume that the impurity is strong
|A] <BE; . 1)

This means that the impurity is located not far from the bottleneck of the long channel
and is in such a place where ¢2(y,) is large. We see that below the threshold I'; is due
to the tunneling through the wide saddle-point barrier and hence is exponentially
small. The condition (21) yields

I'«r,. (22)

Assuming r=1 in Eq. (16), we obtain narrow downward dips on the conductance
curve (the lower part in Fig. 1). Consequently, the “mirror-confined” states® become
apparent in the case of an arbitrary number of transverse modes. Indeed, the condition
(22) means that the escape through the narrow barrier created by the impurity is
small enough and the threshold mode N is “mirror-confined” between the saddle-point
potential and the impurity potential at the energies £,.

Below the energy €, we obtain additionally one bound state® for only the attrac-
tive impurities (A <0) with energy £,=(8/|A|)% The width of this bound state is

firree(3{7x7)2)

and it could be large, as in Fig. 1, due to a slow variation of ReK in this energy region.

=5 (23)

Next, we will investigate the bound state near the threshold Ey. Here we can
expand Egs. (10a) and (10b) in trigonometric functions:®

v2
P(e,§0)=r(e)-§ cos a, (24a)
V2 .
Q(€.£p) =a[l+r(e)sma], (24b)
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where a=[£3/2+ 2€ln&y+ D,] and ®,=argl'(1/2—i€). Assuming that (€) and ®,
are more slowly varying functions than cos a, we obtain the following estimates for the
widths near the threshold:

lqe §0 1
m=7V3 B 2ink,’ (252)
o 1-r 1
TR (25b)
1 (A&\: 1
+_ A
I ‘?(23) (2In&y)* (25¢)

The tunneling of the threshold mode N through the saddle can then be stronger
than the decay due to mode mixing. If we assume

AT T -T2 >0, (26)

then Eq. (16) will describe the resonant peak at the threshold (Fig. 1). Substituting
Eq. (25) into Eq. (26), we find the condition at which the peak appears:

qeljr;go)z]“ .

Note added in proof. After the completion of this work I received a copy of a paper’
by S. A. Gurvitz and Y. B. Levinson, related to the general analysis of a resonant
transmission and reflection due to a single impurity in a conducting channel. Their
formula for the conductance is similar to Eq. (16) in this paper. The essential differ-
ence is the reflection coefficient 7(€) in Eq. (16), because, as I mentioned above, both
the tunneling and the mixing widths, T';* and I',,, are important only near the thresh-
old, where r(€)1.

It is a pleasure to thank Prof. Y. B. Levinson and my colleague E. V. Sukhorukov
for their crucial suggestions concerning this work.
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