Phase diagram of a superconductor with a twin plane

V. P. Mineev and K. V. Samokhin
L. D. Landau Institute of Theoretical Physics, 142432, Chernogolovka, Moscow Oblast

(Submitted 8 January 1993; resubmitted 23 February 1993)
Pis’ma Zh. Eksp. Teor. Fiz. 57, No. 6, 366-369 (25 March 1993)

A new model explains the behavior of the absolute-instability field of
the supercooled normal state observed experimentally in crystalline
superconductors with a twin plane. The H-T phase diagram of tin with
a twin plane is discussed.

A superconductivity localized near a twin plane in a crystal was discovered by
Khlyustikov and Buzdin about a decade ago (see the reviews)."? It was established
experimentally, in particular, that the superconducting transition temperature near a
twin plane, T4, may be either higher or lower than the bulk superconducting transition
temperature T, (below we assume T, > T_.). Studies have also been made of the
behavior of a superconductivity localized near a twin plane in a magnetic field and the
effect of this superconductivity on the onset of a bulk superconductivity.’

The experimental picture is shown in Fig. 1 (for tin with an angle
a=1.4X10"3 at the vertex of the twin wedge).* Here H (T is the critical magnetic
field of a thermodynamic equilibrium with normal and superconducting states of the
twin plane, H,,(T') is the critical supercooling field (the absolute-instability field) of
the normal state of the twin plane, H,(T") is the field below which the volume of the
sample containing the twin plane cannot be supercooled, and H*(T) is the critical
supercooling field of a sample with a twin-plane superconductivity. Also shown in this
figure are the bulk critical field H.(7T) and the surface-superconductivity field
H(T) for tin (a type-I superconductor). The temperature T, is found by extrapo-
lating H,(T') to the temperature axis. The orientation of the field with respect to the
twin plane cannot be controlled experimentally.

An important feature of this phase diagram is that the absolute-instability field of
the normal state, H,, is parallel to the field H, in contrast with (for example)
experiments”? on niobium, in which H,, was parallel to H .

To find the absolute-instability field of the normal state of the twin plane (lines
H,, and H, in Fig. 1), we write a Ginzburg-Landau functional, taking into account the
changes in the conditions for the onset of superconductivity near the twin plane and
the finite reflection coefficient of the twin plane for electrons ° (the z axis runs per-
pendicular to the twin plane):
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FIG. 1.

where D; = —iV; — (2e/c)A, B = curl A is the magnetic field, ¥, = ¢¥(z =
=+ 0), y(r) is a function, localized near the twin plane, which characterizes the change
in the superconducting coupling constant [below we assume y(r) = —y8(z)], and
a is determined by the transmission of the twin plane.

The assumption @ = 0 (that the twin plane is transparent to electrons) was used
in Refs. 1 and 2. In this case the linearized Ginzburg—Landau equation in a magnetic
field which follows from (1) has the form of a one-dimensional Schrodinger equation
with a potential which is the sum of the harmonic-oscillator potential and an attractive
S-function. Analysis of the resulting transcendental equation for H,, (see below) leads
to the relation H,,||H , mentioned above.

Let us examine the opposite limiting case, in which the twin plane has a low
transmission. In the limit @ — o, the twin plane is essentially an insulating interlayer.
The twins on the right and left can then be treated as independent, and we can take up
the problem of finding H,, for a half-space.

It is convenient to work below in terms of the dimensionless variables’
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@y = hc/2e is the flux quantum, and k is the Ginzburg-Landau parameter (we will be
omitting the tildes below).
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We assume that the magnetic field is directed along the y axis, a = (4z, 0, 0), and
=1v(x, z). From (2) we find the equation (z>0)

Y(x,2) = —1h(x,2). (3)
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A boundary condition on ¥ is found from the §-function term in (1):

.
e

We seek the order parameter in the form ¥(x, z) = exp(ihzyx) f(z). The equation for
f(2) then becomes

f
—Ef-s—hz(z*zo)zf: —tf, z>0.

Proceeding as in the known problem 6 of finding the surface-superconductivity field,
we find a Schrddinger equation with a potential

hz—z)% z>0,

VD =112(;42002 z<0,

(4)

with the boundary conditions f( +0) =f(—0) and df(+0)/dz= —f(0). A solution of
this equation is

h
C+exp(~§(z—zo)2)Hv( Jh(z—2,)), 250,

f(2)= (5)
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where H (x) is the Hermite function,” and v= —H(14t/h).

Joining the solutions with the help of the boundary conditions, we find the fol-
lowing equation, which implicitly determines the function A(¢, z):

Hv_l(—\[};zo)__ 14-hzg
H(—Jhz) ~ (1+t/B) B

The H,,(T) dependence is determined by the maximum value of the function
h(t, zy) over 2, Let us analyze some limiting cases of (6). In the case ¥ = 0 (in which
there is no enhancement of the superconductivity near the twin plane), the one drops
out of the numerator, and we return to the known equation ° for H,. In the case
zy = 0, by using the property H,(0) =T'(—v/2)/2I'(—+v) of the Hermite functions
[T(x) is the gamma function], we find the equation

11 t
B[E,Z(l-l—z) =2m (7)

[B(x, y) is the beta function], which was found in Refs. 1 and 2 for H,, in the case
a = 0. In the limit # - 0(¢ - 1), H,, has a square-root behavior, while in strong fields

(6)
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FIG. 2.

we find t/h - —1; i.e., H,, becomes parallel to H,,. (A behavior of this sort has been
seen experimentally’? in niobium; this result apparently means that the twin plane in
niobium is transparent to electrons.)

It is difficult to find from (6) the explicit temperature dependence of the maxi-
mum of h(¢, z), i.e., H,,(T). We therefore content ourselves with a simple qualitative
analysis, which yields the following results. In strong fields, # > 1, we have
H,(T)||H4(T). In weak fields, ignoring the second term in the numerator, we find
Eq. (7). In the limit A — 0, ¢t — 1, this equation yields & ~ \/-1——_t Figure 2 shows the
qualitative behavior of H,,(T).

The assumption that the twin boundary in tin has only a low transmission for
electrons thus leads to an explanation of the experimental behavior of the absolute-
instability field of the normal state.

The apparent reason for the H,, — H|, slope change is that, when twinning occurs
in the crystal, regions characterized by a distinct transition temperature 7', and a
distinct coherence length £ form in the crystal. As a result, the absolute-instability
field has a different slope.

We wish to thank I. N. Khlyustikov for a comprehensive interpretation of the
experimental results and for useful discussions.
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