Home
For authors
Submission status

Current
Archive
Archive (English)
   Volumes 21-40
   Volumes 1-20
   Volumes 41-62
      Volume 62
      Volume 61
      Volume 60
      Volume 59
      Volume 58
      Volume 57
      Volume 56
      Volume 55
      Volume 54
      Volume 53
      Volume 52
      Volume 51
      Volume 50
      Volume 49
      Volume 48
      Volume 47
      Volume 46
      Volume 45
      Volume 44
      Volume 43
      Volume 42
      Volume 41
Search
VOLUME 58 (1993) | ISSUE 5 | PAGE 335
Quasiperiodic and chaotic Langmuir cavitons
The evolution of 3D packets of Langmuir waves is analyzed. The packets are described by the Zakharov equation with several additional terms to simulate Landau excitation and damping. The damping stabilizes the packet at only a small amplitude and at length scales much larger than the Debye length. A caviton with a quasiperiodic or stochastic electric field confined in it is formed. The transition to the stochastic regime with increasing excitation intensity occurs via period-doubling bifurcations.