Soliton-impurity interactions in the Peierls model
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The interaction of amplitude soliton with an impurity in a one-dimensional
Peierls system is investigated. The total energy is calculated. It is

shown that bond soliton-impurity states may be formed. The soliton reflection
coefficient and the transition frequencies between the bound states are
estimated.

The conductivity properties of most quasi-one-dimensional charge density wave
(CDW) systems can be varied by doping within wide limits. It is known that ampli-
tude solitons are formed due to the self-trapping of the doped electron or the hole. The
problem of soliton-impurity interaction (the interaction of soliton with the dopant ion
in the case of doping) has not yet been solved completely. The dynamic of CDW is
usually considered in the framework of the phase CDW Hamiltonian.! Only phase
solitons can therefore be taken into account. In this work we study the interaction of
the amplitude soliton with the impurity which is localized near the chain. We assume
that the interaction potential width is much smaller than the soliton size. We therefore
consider a local interaction.

The Hamiltonian of the 1D Peierls model is
AZ

d
Hon.dx\IlT —ivpaoz+A(x)a++A(x)*U_ ‘I’+?, (1)

where ¥(x) =[\I/’;(x), \I/T_(x)] are the components of the electron operators with
momenta near the right and left Fermi points, vy is the Fermi velocity, o,,
0+ =0,xi0, are Pauli matrices, and g is the electron-phonon coupling constant.

The interaction Hamiltonian has the form
Hi () =V (x) V1 ()W (%) + ¥ (x) V3 (x) o, W (x) + ¥T () P (x)o_W(x). (2)

The first term in (2) describes the forward scattering, and the second term is due to
the backscattering. We assume that the interaction is localized at distances greater or
less than the soliton width &,. We therefore have

Vix)=V6(x—x;), Vo(x)=V8(x—x;),

where x; is the impurity position, and V,=|V,|e®. For simplicity we omit the spin
indices and consider the spin diagonal scattering only. By introducing the Green’s
function of the unperturbed Schrodinger equation

[i0/3t+ivpo,0/3x—A(x)o, —A(x)¥o_]G(xx"t—1')=8(x—x")5(t—-1") (3)

it is easy to obtain in mixed representation (x,w)
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’

where {@,(x)}={¢, 1(x), ¢_,} is the complete set of unperturbed Hamiltonian
eigenfunctions for a given function A(x).

From (1)-(3) we find that eigenfunctions of the Hamiltonian H=H,+ H,,, are
determined from the equation

W(X,E): fdyG(X,y,E)Hnn:(Y)w(y,E) :G(xyth) I’}\P(XHE)’ (4)

where

. Vi V)
y— .
( 44 Vl)

The eigenvalues E are determined from (4):
det[G(x;,x;,E)V—1]=0
or
(|V,|*—V)det G+ V¥G,+ V>,Gy + V Tr G—1=0. (5)

Let us assume that in the absence of an impurity there is one amplitude soliton in
the chain. In this case we take as an unperturbed set of wave functions {¢;(x)} the
one-soliton solution:*

Aj+e+vpgp+iAstanh{ A, (x—x,)/vr]
Pre= V2Le(e+Ay)

exp(ipx)

A+ e—vep—iltanh[ A, (x —x,) /vp]
V2Le(e+Ay)

P e= exp(ipx) (6)

for a continuum spectrum with the dispersion €2=v3p’>+ A% AZ=A?1+ A2, L is the
chain length, and
V8,

P = TP cosh[ Ay (x—x,) /vp]

€=—A4, (7)

for the local level. The deformation A(x) =A+iA,tanh[A,(x—x,)/vg] consists of the
constant term due to the polymer structure and the Peierls deformation A,(x) (x; is
the soliton position).

Substituting (6) and (7) in (5), we obtain the following equation for the shifts of
the valent band levels e =E—¢€(p):

2 sem v (o A,cosh™2%(z) v 2A, Alcosh2(z)
0=(8eL) — (b¢elL) 1( —W)+| 2|COS[)’(T+ cerd) )
__2Ajtanh(2) X , [€—A?
+ | V,ylsin f———— +(V|— | V3] )( 2 ) (8)

381 JETP Lett., Vol. 58, No. 5, 10 Sep. 1993 E. A. Dorotheyev and S. I. Matveenko 381



where z=(x;—x,)A,/vp. We obtain from (8) that

5 L —v(a A%cosh~%(z) - 24, Alcosh~2(2)
e(p)L+8e(—p)L=V,| 2~ (et b)) +{Vafeos B{—+ c(er )
) 2A,tanh(z)
+|V2|SII)B ——é‘i . (9)
For the local level E; shift we find by analogy with the above procedure that
0
6€0=E0+Al=—(V1+|V2|COSB)W. (10)
The total energy shift SW=W — W, is found from (9) and (10):
S Se+8e=(V,+|V. & -
5W(xs—xi)=c0m €+6€y=(V+ | V;|cos B) 2opcoshi(z) (Vo— 7_,,)
.24
—|V2|sm/3?tanh(z), (1)

where v, is the filling factor of the local level (vy=0, 1, 2), and 9=tan*1(A2 /A
For the pure Peierls model (A;=0, 6=w/2) we find from (11) that

A, 24,
SW(x,—x;)=(V+ | VZICOS B) Wz—) (vo—1)— I V2|SIHB?— tanh(z).
(12)
In the case
(Vi+ | V3|cos B) (vo—1) < — | | V,|sin B|4vs/g%, (13)

we have the bond state of the soliton and the impurity. In other cases the energy
minimum is achieved in the limit z— o or z— — .

In deriving expressions (9) and (10) we assumed that the energy level shift is
much smaller than the distance between the neighboring levels of the quasi-continuous
spectrum. It is correct to assume that V,/vg, | V,|/vg<] for all levels in the valence
band, except in a small vicinity of the valence band edge. However, the contribution
of this vicinity to the total energy (11) is small, an additional factor on the order of
A/eg.

Let us now estimate the transition frequencies between the soliton bound levels
and the soliton reflection coefficient at the impurity potential. We assume that the
soliton is a quantum particle which is described by the Hamiltonian:’

62
Hx= -——Z—M—S a—x§+6W(xs—x,~), (14)
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where M_ is the soliton effective mass, x; is the soliton coordinate, and SW (x,—x,) is
given by (12). In order to simplify the problem, we consider the forward scattering
only (i.e., we set ¥,=0) and assume that ¥, (v,— 1) <0. We then obtain the following
expression for the energy levels:

Erm gy (M Tl B1-20",
and for the reflection coefficient
R cos? (/2 1+ 8M,| Uy | €2)
*sinh?(mEok) +cos (/2 {1+ 8M,| Uy £3)
where
| Up| =18V (vo—1)/2, &o=vp/Ay,

n is an integer, O0<n < (/1 +8M,| Uy| §OZ— 1)/2, and k is the wave vector of the soliton.
For the effective mass of the soliton we see from Ref. 4 that

” 4A?
S_§owégz ’

where wj is the phonon frequency with the momentum near 2pg.

Taking into account the data for the polyacetylene:® A,~0.7 eV, vp~6 eV A,
wi=6x10% sec™?, g~8 eV A, and V;~1 eV A, we find that M,~9m, (m, is the
electron mass) and the frequencies are

@ym=E,—E,,~10-10° cm .
For the reflection coefficient we obtain
R~10"°% (15)

The coefficient R has been calculated for the thermal wave vector at T=300 K.
From (15) we see that the solitons can contribute significantly to the conductivity of
the system, and the transitions between bound states of the soliton can contribute to
the infrared absorption coefficient.
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