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A model probability distribution is derived for the muitiplier of the field of
the energy dissipation rate in very turbulent flows. This distribution,
which depends on a single adjustable parameter, is compared with experiment.

The small-scale structure of well-developed hydrodynamic turbulence has been
the subject of numerous theoretical and experimental studies (see the reviews'? ). As
Chhabra and Sreenivasan® have pointed out, none of the existing theoretical models
can explain the experimental distributions of the multiplier of the dissipation field
from the inertial interval which were found in that study.

We show below that the results of an invariant probabilistic modeling? of the rate
of energy dissipation in very turbulent flows of an incompressible liquid can be rec-
onciled satisfactorily with experiment.’

The model equation

D" +2(A1+22) D +23,(g— 1) @=0 (1)

was derived in Ref. 2 for the function ®(g, x) of moments of the normalized dissi-
pation. Here ®(q, x) = (€ ?)/ (€)% the angle brackets mean a probabilistic average; €
is the rate at which kinetic energy is dissipated; the prime means differentiation with
respect to x; x is the logarithm of the turbulent Reynolds number Re=k2/(€)v; k is
the average energy of the turbulence; and v is the molecular viscosity coefficient. The
coefficients A, A,, and A, generally depend on the Reynolds number.

The conclusion? that there cannot exist a finite, nonzero asymptotic value of the
parameters A;,; in the limit x— o« was based on the implicit assumption that the
dissipation probability distribution has statistical moments of arbitrary orders (both
positive and negative). In addition, the multiplier distribution in the scaling interval
cannot be independent of the turbulent Reynolds number of the flow. It is shown
below that, if dissipation moments of certain orders do not exist (if they diverge), then
the parameters of the multiplier probability distribution is not necessarily a function of
the Reynolds number in the inertial interval, and the distributions themselves agree
fairly well with experiment.

Following Ref. 4, we consider the multiplier of the field of the rate of turbulence
energy dissipation, e, ,,= (€),/(€),,, under the condition r <m, where (€), means the
dissipation averaged over a spatial region with a length scale r. If we assume that in
some scaling interval (inertial interval) the distribution of the coefficient e, ,, depends
on only the ratio r/m, and if the succeeding multiplications are independent, then*

417 0021-3640/93/060417-05$10.00 © 1993 American Institute of Physics 417



((er,m)q>=(m/")#‘1 for ngr,m< L. (2)

Here n={(€) ~1/*** and L=k>?/{e) are respectively the internal Kolmogorov scale
and the external scale of the turbulence.’ The parameter Mg is a universal function of
¢, independent of the Reynolds number.

A quantity analogous to the coefficient e,,, was used in Ref. 3: M(b)=e,,/b,
where b=m/r. From the condition that € be nonnegative one finds* oM (b)I.

The minimum size of the vortices in a turbulent flow is ~7, and the average of
the field € over a length scale ~ L can be assumed to be the same as {¢). From Eq. (2)
one finds?

®(g,x) ~(L/n)ta.

The ratio of the external scale to the Kolmogorov scale is equal to the turbulent
Reynolds number raised to a power of 3/4. We can then write

®(g,x) =C(q)exp{3/4ux}. (3)

If the parameter u, does not depend on the Reynolds number, then substitution of
expression (3) into Eq. (1) yields

4
pe=31— (A1+4z) £((A1+459)2 —A3,(g— 1)), @

where the parameters A, , 3 are constants.

We denote by P(M,b) the distribution of the multiplier M. From Eq. (2) and
from the limitation on the range of M values we find

1
fo P(M,b)M%dM =exp{In(b) (1, )}. (5)

Since the coefficient M has an upperbound, the distribution P(M,b) has statistical
moments of all positive orders. From Eq. (4) we then find A3—4,>0.

Let us consider the probability distribution G(Y,b) of the quantity Y= —In(M).
The functions P and G are related by P(M,b) =G(—In(M),b)/M. From Eq. (5) we
find the following equation for the function G(Y,b):

|7 srbreeray =expin(s) (w03 (6)
0

We assume A3—A3>0; then in the limit g— o we have

—q1n(b)

fw G(Y,b)e77dY ~exp
0

4
1+§/12:h(/1§—/13)1/2”

x(1+ > Akq"‘),
k=1

and from the properties of the Laplace transform® we find that the function G(¥) and
therefore the function P(M) must have a singularity in the form of a Dirac §-function.
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FIG. 1. Distribution of the multiplier M for vari-
ous values of the multiplier parameter b according
to the data of Ref. 3. The solid curve is a triangu-
lar distribution which was proposed in Ref. 3 as an
approximation of the distribution in the =2 case.

Figure 1 shows the results of an experimental determination of the M distribution
for various values of the parameter b. We see that the P(M,b) distributions are
unimodal and do not have singularities (which would be manifested experimentally as
a second sharp peak). We therefore conclude

A2 A,=0. (7)

From the hypothesis of the independence of multiplications* we find that the
distribution G is infinitely divisible,’ i.e., it is the distribution of a quantity which can
be written as the sum of an arbitrary number of independent, identically distributed
terms. A necessary and sufficient condition for the function ¢(g) to be the Laplace
transform of an infinitely divisible distribution’ is the condition that we can write the
following:

p(g)=exp{—V(q)},

where W(0) =0, and the function ,,% W(q) is the Laplace transform of some nonneg-
ative measure. We then find from Eqs. (4), (6), and (7) that of the two solutions in
Eq. (4) we need to choose that which corresponds to the minus sign in front of the
radical.

The experimental results of Ref. 3, shown in Fig. 1, are evidence that the function
P(M,b) does not vanish identically for some 0 <M< 1. In this case the Laplace
transform® of the function G does not necessarily contain a factor which is exponential
in ¢g. Using (4), we find A,= —3/4, and from (7) we find 1;=9/16.

Finally, for the function p, we find
3 9 3 12
b (el -2a))) ®

From the obvious normalization condition uy=0 we find 1,<0. Since the quantity
U, is real, from (8) we find

4
.ung
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p=2 FIG. 2. Distribution of the multiplier M according to
Eq. (9) with A,=-3.5.
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The coefficient A, can be related to the intermittency parameter p. If o2 is the variance
of the logarithm (e),, we find!? from (2)
2

oy=pin(L/r), p= (%Z#q) lg=0s
and from Eq. (8) we find

3(3 2 ,
”=Z(§ —/11) /(—/11)-

Substituting (8) into (6), we find the infinitely divisible distribution G(Y,b) (see
problem 5 in Chapter XIII in Ref. 7). Switching to the variable M, we find the
multiplier distribution P(M,b):

1
P(M,b)=(2m)"paY~>?M~lexp| —5[pa¥ 2+ Aa~ Y22}, (9)

here p=31n(b), a=(5—3A)% and Y= —In(M).

Figure 2 shows distributions P(M,b) from (9) for the values =2, 3, and 5. We
selected the value ;= —3.5; in this case we have p~0.26. Figure 3 shows distribu-
tions of the multiplier M for b=2 and for the parameter values 1,=0, —2, and —4.
Comparison of the theoretical curves (Fig. 2) with the experimental curves (Fig. 1)
reveals a satisfactory agreement.

Finally, we wish to stress that such theoretical models of the intermittency of a
small-scale turbulence as the log-normal model,® the B-model,’ the random B-model, '
and the p-model' are at odds with the experimental distribution of the dissipation
multiplier.3 The distribution found in the present letter leads to a satisfactory descrip-
tion of the distribution P(M,b) of the dissipation field multiplier M for various values
of b with only a single adjustable parameter. The intermittency parameter u can be
chosen as this adjustable parameter.
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FIG. 3. Distribution of the multiplier M for b=2.
Curves I, 2, and 3 were found from Eq. (9) with
A1=0,—2,—4. The dashed line shows a triangular
distribution.

0 as M 10

The model distributions vanish more rapidly than the measured ones in the limit
M- 1. Tt is not difficult to show that this circumstance leads to values of the higher-
order structure functions of the velocity field which are higher than the experimental
ones. This discrepancy between theory and experiment may be a consequence of a
weak dependence of the multiplier distribution on the Reynolds number of the flow in
the scaling interval; that possibility was not considered in the present letter.
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