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The problem of an isolated ion with a total angular momentum J in a cubic
metal is analyzed by the technique of Abrikosov pseudofermions. A

system of generalized kinetic equations is constructed. The particular example
J=5/2 is studied in the case in which the ground state is the quartet
I'y (CeBg). The central peak in the susceptibility can be described by a

sum of two Lorentzians, one of which is narrower and higher than the other.
This multimode behavior is shown to be a general phenomenon when a
degenerate multiplet is not a doublet and does not constitute all the states of
the system.

Solids exhibit a very large number of local excitations with internal degrees of
freedom. Many of these excitations are associated with ions of rare-earth elements and
actinides with a total angular momentum J. In the crystal field, the corresponding
(2J+ 1)-fold multiplet splits into several sublevels. Transitions between these sublev-
els occur because of an interaction of this multiplet with other degrees of freedom of
the crystal (conduction electrons, phonons, etc.), and also because of an exchange
interaction between neighboring ions. Associated effects are currently being studied
actively. In the present letter we wish to discuss the properties of an isolated ion with
a degenerate ground state in a cubic metal. We are particularly interested in the case
in which this ground state is not a Kramers doublet. A physical realization of such a
system is the compound CeBg. In this case we have J=>5/2, the ground state of the
Ce’* ion is the quartet I'y, the excited state is the doublet T';, and the distance
between these states is 46 meV (Ref. 1). At Tp=3.1 K, however, there is a transi-
tion to a quadrupole state in the subsystem of Ce>* jons.? The cerium ions can thus
be assumed to be independent at T'> T',. We will also be ignoring consequences of the
Kondo effect. According to Kunii,> the Kondo temperature in CeBg is lower than 10
K. For CeBg, our theory thus applies at 7> 10 K.

The problem of an isolated rare-earth ion in a cubic metal has been studied
theoretically by Becker* (see also the review by Fulde and Loewenhaupt®) by the
method of Zwanzig-Mori memory functions. In particular, the example of the Ce3+
ion was studied in the case in which the ground state is the I'; doublet. In the present
letter we use the simpler and more graphic method of pseudofermions, as proposed by
Abrikosov.® The results of Refs. 4 and 5 on the I'; ground state are basically the same
as our own. If the lower level is instead the I'y quartet, the dynamic susceptibility is
described by a sum of two Lorentzians; i.e., the central peak has a two-mode structure.
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This multimode behavior is characteristic of the central peak when the degeneracy of
the ground state is higher than a Kramers doublet.

The Hamiltonian of this system is

H=Hy+ Y (&—maf a+(1/2) (g~ Do 3 (a}Ta0) - (PFopih), (1)
A

where H is the Hamiltonian of the conduction electrons, a; is a pseudofermion
operator which annihilates a state A of the multiplet with an energy €;, u is the
chemical potential, g, is the Landé g-factor, and ¥, is an operator which annihilates
an electron at an ion site. To ensure that one and only one of the states A is occupied,
we need to take the limit® 4 — — 0. We will calculate the susceptibility of an isolated
ion with a total angular momentum J. In a cubic crystal this susceptibility is given by

x(w):if: dte ® ([1,(1), J.(0)]). 2)

A Feynman-diagram series for y in lower-order perturbation theory is shown in Fig.
1. The dashed and straight lines correspond to pseudofermions and electrons.

The real part of the pseudofermion eigenenergy o,(€;) corresponds to a shift of
the level A. This real part depends weakly on the temperature and can be incorporated
in the definition of €;. The quantity —Imo;(€;) =7; determines the width of the 4
level.

Continuing from discrete imaginary frequencies to the real axis, we easily find the
formula””®

1
X(@) =5 f dxe—*'T[g(x)T (x,x+0)g(x+ ) —g* ()T (x,x+0)g(x+0)

+g*¥(x—)T(x—w,x)g(x) —g*(x— )T (x —w,x)g*(x)J,. (3)

Here g and T are the pseudofermion Green’s function and the vertex part; the state
labels have been omitted; g*(x) =g(x—i8); and the imaginary parts of the arguments
of the function I' are the same as for the corresponding g-functions. The derivation of
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(3) incorporated the circumstance that I' is an analytic function of its two indepen-
dent variables with cuts along the real axis.'” The normalization factor N in (3) is

N= 2 (afa;)=Y G, exp(—e)/T), (4)
A A

where G, is the degree of degeneracy of level A. In this expression, as in (3), we have
taken the limit gy — — oo . Making use of the analytic properties of the vertex I" and the
circumstance that the singularities of the g-function lie at + «, we easily find an
equation for T for real variables from the condition u— — 0 (Refs. 8 and 9). If the
imaginary parts of the two arguments are identical, the integral term is small, and the
corresponding vertices are the same as J,. If the imaginary parts of the arguments are
instead different, the poles of the Green’s functions lie on different sides of the real
axis. If damping is ignored, the integral diverges. As a result, in the case y; € T we find
the system of equations

__yz . GvA'N(GvA’)FV#(GV'eV+w)
Tia(xx+0)=JZ, +2igd,, O+ €y +iv,+iy,

Ju/l’ (5)

where €,;,=¢€,—¢€;,; N is the Planck function; a summation is carried out over u and
v; and we have g2 = (7/2)[(g;— 1)J..No]?, where Ny is the density of electron states at
the Fermi level. This expression is valid in the case g*< 1. Equations (5) constitute a
generalized kinetic equation which describes transitions between levels (off-diagonal
I';.,) and fluctuations in their populations (I';;) caused by a perturbation propor-
tional to J,.

As an example we consider an ion with J=5/2. The wave functions are*’
1. =a| £5/2) —b| ¥3/2);(Ty),

Py, =b|£5/2)+a| ¥3/2), ¥y, =|£1/2);(Ty), (6)

where a=(1/6)"? and b=(5/6)"2. The interaction of the total angular momentum
J with electrons does not commute with the Hamiltonian of the crystal field. As a
result, terms appear in (5) which mix fluctuations of the populations of the compo-
nents ¥, and ;. of the I'y quartet. This mixing stems from the fact that the matrix
elements of the operators J, between the states i, , and ¥; are not zero. This point
can be ignored if the ground state is the I'; doublet and if the distance between levels
satisfies €> T'. In the case of a I's ground state, and under the condition €» T, on the
other hand, the effect of I'; can be ignored in a first approximation, and under the
condition o €€ the dynamic susceptibility is determined by a relaxation of the popu-
lations of the states of the quartet. In this case a mixing of the states 1, and ;. plays
a governing role. As a result, using I';3y1 23)+= —T23)- 23— =T 2(3), We can put
system (5) in the form

(0+62ig?T/9) T, +4ig?TT 5 /3=11(w+2iy,)/6,
4ig?TT, /3+ (0 +58ig?T/3) T3 = (w0 +2iy,) /2, (7
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where y,=65¢°T/12= —1Imoy3,(0) is the damping of the levels of the quartet. Solv-
ing this system of equations, and substituting the result into (3), we find the following
expression for the susceptibility under the condition & <e:

o= ()
where

Z,=x {359;“ (5i —§§+ 109(5;1)) ] [72(6,—6_)8,.171, (9
and

v, =8T8,,8,=[59+(820)%}/9. (10)

The central peak, which describes the relaxation of the population of the quartet
components, thus has a two-mode structure. In terms of numerical values we have
6,=974, 6_=3.37, (6_/6,)=0347, Z,=0.238, Z_=1.57, and Z_/Z  =6.58.
We see that nearly all the intensity is in the minus mode, which relaxes three times as
fast as the plus mode.

The resonant contribution to y(w) is of the same form as in Refs. 4 and 5:
20(1—e~9T)
T9R2+e Ty (w—e+1yy)°

where y,;=g2(10/3){€[3N(€) +2]+35T/12}. This expression is also valid at T ~e.
Expressions (8) and (11) saturate the standard sum rule:

(11)

XRes(a)) =

(Jﬁ):—(l/n')fdw(ImXRe,+ImXRes)N(—w). (12)

If the ground state is the I'; doublet, the results at T <€ are the same as in Refs. 4
and 5.

We conclude with the following comments.

1. The derivation of (7)-(10) was restricted by the condition € « T. However, the
initial kinetic equations, (5), are valid for an arbitrary relation between € and 7. The
derivation of those equations was limited by the conditions g*<1, Yp<T, and
g In[Eg/min(€;T)] < 1. The latter condition means that we can ignore corrections for
the Kondo effect.

2. Equations like (5) can be written for the cases of an interaction with phonons
or spin waves. In those cases, however, the amplitudes for transitions between degen-
erate states are zero, since the density of states of the corresponding excitations tends
toward zero more rapidly than o at small values of . It is thus necessary to take into
account two-quantum Raman processes, as was done in Ref. 8 in a study of the
interaction of a degenerate center with phonons.

3. We have found that the central peak has a two-mode structure because of a
mixing of fluctuations of the populations of different components of the I'y quartet. If
we had been discussing the quadrupole susceptibility instead of the ordinary suscep-
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tibility, we would have found a two-mode structure again, but with different relaxation
times, corresponding to other zeros of the fourth-order determinate which determines
the properties of the solution of Eq. (5) in the case of four diagonal vertices I';;.

In general, the following conditions must hold if the central peak is to have a
multimode structure: 1) The degree of degeneracy of the ground state must be greater
than 2. 2) The system must have at least one excited state in addition to the degen-
erate state which we have been discussing. Otherwise,'” we would have T’ ~J,, and we
should find the single-mode behavior immediately from (5). This assertion is clearly
illustrated by the example of an ion with J=3/2. In this case, as above, it is simple to
find two modes: 2y, =12g°T and 2y_=2g*T. However, Eq. (5) is constructed in
such a way that the mode 2y, disappears from the solution, and we have

T=J,(0+2iv)/(w+2igT), (13)
where y=(15/4)g*T.
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present letter.
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