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The massless chiral fermions which are localized in the core of a quantized
vortex in Fermi superfluids and superconductors produce an anomaly

in the vortex core structure at low temperature. The result obtained by Kramer
and Pesch* for axisymmetric vortex in a s-wave superconductor is

generalized to the more complicated vortices.

1. INTRODUCTION

The gapless fermions interacting with the Bose fields of the order parameter lead
to the anomalous behavior of superfluids and superconductors at low temperature,
T «T.. In the superfiuid *He-4, where the gapless fermions are chiral, two classes of
phenomena take place: 1) the chiral anomaly—nonconservation of the linear momen-
tum of the coherent condensate motion due to the spectral flow, and 2) singularity in
the gradient expansion of the order parameter field, which is equivalent to the zero-
charge effect in particle physics, since it comes from the logarithmic polarization of
fermionic vacuum (see the review article!).

In ordinary superconductors the massless chiral fermions appear in cores of
quantized vortices.” They also lead to similar phenomena: 1) the spectral flow along
the branches of chiral fermions in the vortex core gives rise to the momentum transfer
from the superfluid component to the normal component,3 and 2) the singularity in
the order parameter field in the vortex core region—an anomalous increase in the slope
of the order parameter at T € T —was analytically found in Ref. 4 and numerically
confirmed in Ref. 5. The slope of the gap A(r) near the origin, (dA/dr) |,_,, increases
as T, /T at low T,* while the core size remains on the order of the coherence length
£ The latter singularity was calculated for the particular case of the axisymmetric
vortex in the s-wave isotropic superconductor. Our goal was to determine how the
singularity is modified in the case of more complicated vortices, including those in
unconventional superfluids and superconductors, such as superfluid *He and high-T,
materials.

2. ANOMALOUS BRANCHES OF LOCALIZED FERMIONS

The quantized vortices in superfluids and superconductors contain the anomalous
branches of the low-energy fermions which are localized in the vortex core.? The
energy spectrum of these fermions in the semiclassical approximation is characterized
by two quantum numbers: the momentum £k, along the vortex axis and the impact
parameter y=2- (qXr)/g=rsin(a—¢), where q is the projection of k onto the x—y
plane with ¢*=k%—k2, a and ¢ are the angles in the x- plane of q and r, respectively.
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FIG. 1. Energy spectrum of fermionic zero modes localized in the vortices in terms of the impact parameter.
a—One doubly degenerate branch of fermions in ordinary singly quantized vortices in an s-wave supercon-
ductor; b—two branches in doubly quantized vortex or in the *He- B vortex with broken parity, the Fermi
surface appears at a finite impact parameter, y= +rp.

In the conventional, singly quantized Abrikosov vortex in an ordinary s-wave
superconductor, there are two identical branches corresponding to two spin projec-
tions with the spectrum

E(k,y)=yqo(q). (2.1

In the quantum limit, which takes into account the quantization of the angular mo-
mentum, gy="*n, the quantum w,(q) is the distance between the levels with neigh-
boring 7, Usually this interlevel distance is on the order of AN 0)/Ep<A( )
[A( ) is the gap far from the vortex, and Er is the Fermi energy], and we consider
the region T> w, where this quantization can be ignored. These branches are anom-
alous since, if they are considered as a continuous function of y, they cross zero energy
level. The crossing occurs at y=0 for all k, (Fig. 1a), which causes a one-dimensional
Fermi surface (Fermi line) to form. At low temperature the sharp Fermi distribution
of the chiral fermions in the vicinity of the Fermi line leads to the anomaly in the
vortex core. This anomaly is strengthened by the unique circumstance that the posi-
tion of the Fermi line does not depend on k,.

The number of fermionic zero modes, N, is completely defined by the topology
of the vortex, i.e., by the winding number » of the vortex:* N,,=2n. A similar
relationship between the number of fermionic zero modes in the core of the string and
the string winding number # is found in the relativistic field theories.*’ The difference
is that in the core of the string the branches cross zero as functions of &, while in
condensed matter the vortices cross zero as functions of y.

The fact that the anomalous branch in Eq. (2.1) crosses zero energy at zero
impact parameter y is the result of the symmetry of the vortex, which requires that
—E(—y) should be the branch of the fermionic states in the vortex core. Therefore,
if there is only one anomalous branch, then the crossing should occur at y=0, ac-
cording to the equation E(—y)=—E(y) for this unique branch. The situation is
different in the case of vortices with winding number n=2, 3, etc., which contain
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several branches of zero modes. Several nonidentical branches can occur even in the
case of singly quantized vortices, e.g., in the triplet-paired states, such as ’He-4 and
3He- B, where the degeneracy over the spin states is lifted and the modes with different
spin projections are not identical.

According to the relationship between the winding number and the number of
branches,’ in a doubly quantized vortex (n=2) in ordinary s-wave superconductors
there should be two anomalous branches (each being degenerate over spin). It is
evident from the symmetry consideration that there is no reason for two branches to
cross zero at y=0. Instead the equation E,(—)) = — E, () is satisfied if the branches
cross zero at two different points y= +rz(g) (Fig. 1b), which are symmetric with
respect to the origin:

E\(k))={y—re(@)1qu(q), E(ky)=[y+rr(q)]lgolq). (2.2)

The position of the Fermi surfaces, +rg(g), of zero modes therefore begins to depend
on g, which should lead to the smoothing of the singularity in the vortex core. In the
vortex with winding number n=3 two branches cross zero at mutually symmetric
points y= + rx(g), while the third branch should be antisymmetric and should cross
zero at y=0.

In the case of singly quantized vortices in the triplet-paired *He- B two anomalous
branches (corresponding to two different spin components) have been calculated by
Schopohl.® While for the most symmetric vortex, the o-vortex, the branches cross zero
at =0, for the vortex with a broken parity in the core, the v-vortex, the crossing
occurs at finite 5= + rz(¢). The finite value of 7 takes place in the *He-4 continuous
vortices, where the parity is also broken.’ This rr depends on the angle in the x—p plane
if the axial symmetry is broken in the vortex core.®

3. ORDER PARAMETER JUMP IN THE CONVENTIONAL AXISYMMETRIC
VORTICES

Let us consider the influence of the zero modes on the gap function within the
vortex core. The gap equation can be found from the BCS action which contains two
terms:

A 2
S:fd3rdtig| 4 Tr In(io—H), (3.1)

where g is the interaction constant, and the second term, in which H is the Hamilto-
nian for fermions in the presence of the vortex, is the fermion contribution. The trace
is over all the fermionic states v, and also over the thermal frequencies. Variation over
the gap function, 8S/8A* =0, gives the self-consistent equation for the gap function:

E,

3T’ (3.2)

A(r) =g Z u,(r)v¥(r)tanh

where u,, and v, are the Bogolyubov wave functions.
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Let us first consider the ordinary vortices with the energy spectrum in Eq. (2.1).
The low-energy anomalous branches (zero modes) lead to the singular contribution to
the gap function:

rgo/(g)sin(a—¢)
2T ’

Aging(r) =g uq(r)v} (r)tanh (3.3)
q

which comes from the fact that in the intermediate asymptotic region, T.> T'> «w,, the

sharp coordinate dependence of the Fermi function near the Fermi surface of the

chiral fermions produces the abrupt behavior of the order parameter near the vortex

axis. This behavior is characterized by the new scale

L T 3.4
§2_ F 601~§ Tc. ( . )

At low temperatures 7" «€ T'., when the Fermi function is narrow and close to the step
function, this scale £, becomes smaller than § and begins to define the properties of the
vortex core near the origin. In this low-temperature limit we can use the step function

rqo(t)sin(a—¢)
2T

=0[rsin(a—¢)]1=0(r)O[sin(a—¢@) ], (3.5)

and we can ignore the coordinate dependence of the Bogolyubov functions which have
the characteristic length scale on the order of £>&,:

uq(0)v¥(0) =A(g)e*~e?|A(x)]|. (3.6)

1

The oscillations on the scale k"~ and the resulting Friedel oscillations of the gap
45

function in the vortex core become important only at T ~aw;.™

As a result, the Fermi-liquid distribution of quasiparticles which occupy the
gapless branch results in the stepwise behavior of the order parameter with the infinite
slope at the origin:

smg(r) g®(r)f A(Q)f la@[Sln((ﬁ a)l

or
Biing () =0 (r)e? | Agng(0) |, (3.7)
where the contribution of the zero modes to the gap far from the vortex,
2 (ke dk,
‘Asing(oo)zg—ﬂ—_ J Py A'(q): (3.8)

is on the order of g|A( ). This contribution is small compared with the regular
contribution only due to the small coupling constant g, which is on the order of
1/In(Eg/T,). Therefore, the gap A(r) has a jump at the origin, from zero value to
A (00). This jump is smoothed out over the distance on the order of &,<¢, if one
takes into account the finite 7. Because of the regular contribution to the order
parameter from the fermions with the gap, the order parameter will then gradually
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FIG. 2. Singularity in the order parameter within the vortex core due to zero modes. a—Stepwise discon-
tinuity at the vortex axis in ordinary singly quantized vortices in an s-wave superconductor with zero modes
in Fig. la; b—square-root singularity at a finite distance r in two-dimensional vortices with zero-mode
behavior in Fig. 1b.

increase from Agp,( o) to the value A( ) at a distance on the order of the usual
coherence length £ (see Fig. 2a). This double-scale behavior of the order parameter is
in agreement with the numerical calculations.’

The radial derivative of the order parameter has the §-function singularity which
corresponds to the infinite slope at the origin:

arAsing(r) =6(r)ei¢|Asing(w)l' (39)

4. ZERO MODES WITH A FERMI SURFACE AT THE FINITE IMPACT
PARAMETER

Let us now consider how the result obtained above is modified when the Fermi
surface of zero modes appears at a finite rr in Eq. (2.2). In the axially symmetric
vortex the distance of the Fermi surface from the origin, rz(¢), does not depend on ¢
and is on the order of the coherence length in the *He-B vortices with broken parity.®
It should be of the same order of magnitude in doubly quantized vortices in ordinary
superconductors.

The contribution to the order parameter from the zero modes now contains two
Fermi steps which are symmetrically shifted from the origin:

s kg dkz 27 da . ]
Aging(r) =ge f e %ﬂ(q)fo 25 Sin alO(r sin a—rp(q))

+0O(rsina+reg(q))]

ke dk, r#(q)
=ge’¢f'; 2 M@ {11 Olr—rr(q)] (4.1)
—RF

We see that the singularity is essentially smoothed out because of the dependence
of the Fermi surface on k, (or g¢). The singularity can survive omly for two-
dimensional vortices, i.e., for the vortices in very thin films with size quantization, or
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in the layered materials, like high-T ', superconductors. In the first case, k, is quantized,
i.e., g=kpgis fixed. As a result, the Fermi line of zero modes becomes the Fermi point.
We have

Aging(F) =€ | Agng(0) | 1—r—§ O(r—rp) . (4.2)

This is the square-root singularity whose infinite slope is at the Fermi surface r=rp,
which appears against the background of the regular contribution (see Fig. 2b). At
rz=0, Eq. (4.2) transforms into Eq. (3.7).

If the axial symmetry is spontaneously broken, as in superfluid *He vortices, or
externally broken in superconductors due to the presence of a crystal field, then the
Fermi surface will depend on ¢. The anisotropy of the Fermi surface leads to the
smoothing out of the square-root singularity even in two-dimensional vortices.

5. CONCLUSION

The anomalous behavior of the order parameter in the vortex core in the tem-
perature region 7,>T» T%/Ey is attributable to the Fermi surface (Fermi line)
formed by the chiral fermions which are localized in the vortex core. The sharp
distribution function of the fermions in the vicinity of the Fermi surface leads to a
singularity in the order parameter. In the case of ordinary axisymmetric vortices in
s-wave superconductors the Fermi surface is formed at the vortex axis, which results
in the sharp stepwise distribution of the order parameter near the vortex axis. For the
more complicated vortices, in which the Fermi surfaces of chiral fermions are formed
far from the vortex axis, the singularity is integrated over the Fermi surface and is
smoothed out. The only exception is represented by the two-dimensional systems (or
the quasi-two-dimensional layered superconductors), in which the Fermi line of the
chiral fermions becomes the Fermi point. In this case the square-root singularity in the
order-parameter field is observed far from the vortex axis.

I wish to thank N. B. Kopnin for illuminating discussions, and L. Levitov who
brought my attention to the problem of the vortex core anomaly.
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