Nonlinear kink oscillations of a magnetic flux tube
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The nonlinear equations which describe the long wavelength, weakly dispersive,
kink oscillations propagating along a magnetic flux tube are derived. The
character of nonlinearity appeared to be cubic, with the coefficients which
reflect the influence of a magnetic free environment on the transverse
oscillations of the flux tube.

In recent years the characteristic features of magnetic flux tubes have been stud-
ied extensively because of their dominant role in the dynamics of solar atmosphere:
According to the observational data, magnetic field at the solar surface occurs not in
a diffuse form but is concentrated in thin, intense, magnetic flux bundles embedded in
nearly nonmagnetized plasma. Usually magnetic flux tubes are isolated and far re-
moved from each other, covering 90% of the solar atmosphere outside sunspots.! In
sunspot regions magnetic flux tubes form a dense conglomerate.” A structured mag-
netic field is often encountered in a laboratory plasma and in other astrophysical
objects.

The interaction of magnetic flux tubes with the surrounding plasma results in the
excitation of different kinds of oscillations which propagate along flux tubes.> Among
them the most important one is a kink oscillation corresponding to the dipole mode
with the azimuthal wave number m= =1 and the phase velocity

B

V47T(pi+ pe) .

Here p; and p, are plasma densities inside and outside the flux tube, and B is the
magnetic field strength. The linear oscillations of the flux tube are now well under-
stood, and are discussed elsewhere’ (see also Ref. 4 and the bibliography cited there).
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In the present paper we derive the equations which govern the propagation of
weakly nonlinear, long-wavelength kink mode which propagates along the magnetic
flux tube surrounded by nonmagnetized plasma. We adopt the model of a cylindrical
flux tu})e of radius R, which is assumed to be much smaller than the wavelength
A=k""

kR<1. (2)

The discussion is based on the ideal MHD equations which are written here for
convenience:
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The above set of equations should be supplemented with the equation for the pressure
balance in an equilibrium state of the flux tube:

JB .
37 =cur [vB],

B*(r)
PN +—g—=p.. (5)

Here p; and p, are gas kinetic pressures inside and outside the magnetic flux tube. For
simplicity, we assume that the plasma inside the flux tube is cold, p;<p, , and, accord-
ingly, we ignore the gas-kinetic pressure inside the flux tube. This assumption is not
essential but it allows us to simplify the algebra. Equations (3) and (4) describe the
motion inside the flux tube and outside it (where these equations become pure hydro-
dynamic equations). At the surface of the flux tube the boundary conditions of con-
tinuity of the normal component of the velocity,

Uri|r=R=vre|r=R» (6)
and of the normal component of the momentum flux,
B
Pi+'8'; lr=R=pe'r=R ’ (7

should be satisfied. We choose the cylindrical coordinate system whose z axis is di-
rected along the magnetic field.

According to the linear theory developed in Ref. 3 for perturbations, proportional
to exp( —iwt+ime+ikz), the MHD equations are reduced to a single equation for the
function 1 inside the flux tube,

19 Y [0 2 1 0 g

ey m g R (®)
and to a single equation for the velocity potential v=—Vy outside it,

19 3y [ 2 0 9
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Here v, is the Alfvén velocity, and c¢g = yp/p is the sound velocity outside the flux
tube. The velocity and magnetic field perturbations are expressed in terms of the
function ¢ as follows:

ay 1a_¢

v,= —5;, U¢,= —; an s Uz=0, (10)
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Accordingly, the pressure perturbations outside the flux tube is

Ope=—i(w—ku)p.y. (12)
Inside the flux tube the solution is proportional to a first-order (m=1) Bessel func-
tion: p=u/.7 | (g;r) with g*= (0® —k®%)/v%. In the outer region the solution of (9)
should have the form of a divergent wave: y=D#{"(q, r), where 5 is a Hankel
function, and ¢%= (w’—Kk*c%,)/c% .

The linearized boundary conditions (6) and (7) lead to the dispersion relation

W' —k%5dlny dlny

N7 or or ’ (13)

where we use the notation n=p,/p,. In the long-wavelength limit (2) expression
(13) is expanded in powers of a small parameter (kR). The first term in this expan-
sion gives the phase velocity of the kink mode, (1). Retaining the next order terms, we
obtain the dispersion relation

w=ck+Bk*+iu} , (14)
where
cR? meR? F—ct
b=—3arm> ¥~ 4 Uamd (1

Here the second term describes a weak dispersion of the kink mode, and the third
term corresponds to the radiative damping of flux tube oscillations described in Ref. 3:
According to this effect, the oscillation flux tube gives off its energy through the
radiation of secondary acoustic waves.

To determine the character of the nonlinearity of the kink mode, we should take
into account that the first nonlinear term which can affect the finite-amplitude kink
oscillations is a cubic term, since the azimuthal dependence of the quadratic nonlin-
earity contains only the terms with m =0 and m=2. Taking this fact into account and
using dispersion relation (14), we introduce the stretched variables

(=e(z—ct), =€t (16)

To carry out adequate perturbation expansion of the MHD equations, we represent the
velocity and the magnetic field with power series expansion in € as follows:

2 32
vy €y =10,

v, =¢
V,=€v,+ szzz-i- e,

B, =¢"?B,, +€3/21}21 4o, (17)
B,=By+€"By,+€"*By,+ -+,

p=potepi+€pr+-.

Outside the flux tube we have, respectively,
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Vo =€, +€ vy +100,

Uez=e3/zuelz+65/zve22+ Tty

3/2 5/2 (18)
Pe=Pert+€ pa+€pat ",

32

=pote€ pel—'6 Pe2+"',

where v, and B, are the transverse (7 and @) components of the velocity and the
magnetic field. The expansions (17) and (18) give the correct description of the linear
stage of the flux tube oscillations and are consistent with the main features of weakly
dispersive, long-wavelength, transverse oscillations of the flux tube which is embedded
in the nonmagnetic region. It is important to note that in this limit the above choice
allows us to specify the nature of the nonlinearity separately from the (weak) disper-
sion which has, in this limit, the form obtained from linear analysis. Substituting (17)
and (18) in the MHD equations and equating terms of each order in €, we obtain a
sequence of equations up to the desired order. First, for the order of € ¥? we have from
(3) and (4) the relations

avyy By By 3By,
—CPO G = "ar V. B+ 3¢ (19)
dBy; avyy
e g .
and for the outer region we have
aVelJ.
—CPO a5 aé- vl D1 (21)
Pi=cCip; . (22)
From (20) we have
By
By =—"7vu. (23)
Substituting Bl . from (23) into (19), we obtain
avlj. BOBlz
(- R i ) T (29

We see from (24) that v, , and consequently B;, can be expressed in terms of some
function i exactly in the same way as above [cf. Egs. (10) and (11)]. In other words,

BO v —c? a¢
vy ==V, ¢ By =7 Vl Y, Bp.= PR (25)
Using the boundary conditions (6) and (7), we find
B(Z) 3\’11 avyy
(‘ ”+4ch) o ~ Py, (26)
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This expression coincides with those obtained in Ref. 3 for the linear oscillations of the
flux tube and gives the phase velocity such as (1). The validity of (26) can be easily
shown by integrating the r-component of Eq. (24) over r in the entire space. We
represent the functions ¢ and y as follows:

V=AX (r)e9E(zt), y=DX,(r)e%E,(z,1).

Integrating the r component in Eq. (24) in the whole space with the help of (27), we
obtain

R B} ABX,-(r)agid % DaXeaéed
Jy (emigpe |45 5 o [ o055 e

R 3 ByB - 3py,
0%z f AL (28)
R

o Or 47 ar

The continuity of the momentum flux eliminates r.h.s. in Eq. (28), and the continuity
of the normal component of the velocity leads directly to Eq. (26).

Next, for the order of € we have

Po
P1=""V1z, (29)
c
from the second equation in (4), and from the z component in (3) we have
c B2
Po CU = —5 . (29a)
Here we used relations (25) and their consequence in the form
22
UA—C aBu
v, Blz‘_—vi I (30)

5/2

Now, at the order of ¢’ the transverse components of Eq. (3) and of the first

equation in (4) give

aUZl BO le BO aU“_ al)“_ 81}11
~CP0Gg "am af ‘an Tt Br= P tem e —ptge  OD)
and
B Jv JB
¢ 2 4 By ). (32)

3 tHher T ag 1z

In the outer region of this order we have

aV ave].L Pel
—CPH T ac +VLP2— P 3o _Tvl va (33)
avelz ap]
—CpeO ag =_a§ ] (34)

or taking into account that P1=C§Pe1, instead of (34) we have
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CPVer ;= PelC (35)
Combining Egs. (33) and (35) and taking into account that

CP0 OV
vPel—d—”;? S (36)
we can rewrite Eq. (33) in the form
Ve, pelv211 A2 TR ) a"eu
—CPO "oz 3t +V, (Pz 2e =Py T T . v I (37)
Matching Egs. (31) and (37) in terms of the boundary conditions, we obtain
avyy Bo JB,,; avyy Peo avy,
c(potp0) Tg_ T =clpotpo) 3 C‘z‘gzvfl 3 (38)

Eliminating the second-order terms in Egs. (38) and (32), we obtain straightforward
nonlinear equations with respect to the stretched variables

GB“ C d ( B%l) C2 CPH aB]l
ar PmUAag L S Bo(on+Peo) 2 ac -

It is convenient to introduce instead of the transverse components B, the complex
quantity /= B,—iB, and normalize it by the unperturbed magnetic field B,. Finally,
the nonlinear equation for a kink mode can then be written as

aH AP S JOH_ )
. (B — e \H * ac

4 9§

Equation (40), aside from the last term, is similar to the equations obtained for
hydromagnetic waves parallel to the magnetic field in a cold plasma.®” We would like
to emphasize that, in contrast with the case of an unbounded plasma considered in
Refs. 6 and 7, here we are dealing with an oscillating magnetic string which interacts
with the nonmagnetic surroundings. The influence of the magnetic free region is
accounted for by the last term in Eq. (40) and is reflected in the propagation velocity
of the kink mode [cf. Eq. (1)] which contains the plasma density outside the flux tube.
Equation (40) should be supplemented with the dispersion and radiative damping
terms obtained in a linear analysis. With the help of dispersion relation (14) a stan-
dard procedure gives the equation describing the evolution of a weakly nonlinear and
weakly dispersive oscillations of the magnetic flux tube. It corresponds to the dipole
(kink) mode and contains the condition under which the oscillating flux tube radiates
secondary acoustic waves:

aH cd | H[2H) — c |H|28H FH u fw FH ds
—_— + v. 7
Taa Taeme AT e )98 ¢
where B and p are given by expressions (15). The effect of radiative damping is very

important in the study of the dynamics of a flux tube in the presence of shear mass

flows along the magnetic field.* As it was shown in Ref. 4, negative energy waves
(NEW) in this case can be excited along the magnetic flux tube. According to the

(39)

=0, (41)
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main feature of the NEW, which consists in growing their amplitudes due to any kind
of dissipation, the radiative damping provides the development of a strong instability
in those regions where the NEW can be excited. In the next paper of the ongoing
studies® we will derive the evolution equation similar to the equations obtained above
in the presence of shear mass flow along the magnetic flux tube, and we will show that,
depending on the parameters of the flux tube and on the surrounding plasma, a
nonlinear equation such as (41), with shear flow as the source of energy, leads to
vigorous nonlinear dynamics of the flux tube, such as the appearance of solitons with
explosively growing amplitudes.
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