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The growth and melting of *He crystals spin-polarized by a magnetic field at
temperatures below the antiferromagnetic transition (and below the

superfluid transition in the liquid) are accompanied by superfluid spin currents
in addition to mass flows. In fields weak in comparison with exchange

fields, the crystallization waves change in nature, because the spin currents
begin to play a predominant role. The wave spectrum acquires an

acoustic nature, with a velocity inversely proportional to the magnetic field.

Crystallization waves arise at the interface between solid and superfluid “He
because of the quantum, dissipationless nature of the processes by which the crystal
grows and melts."? The potential energy and kinetic energy of the oscillations are,
respectively, the surface energy of the crooked interfacial boundary and the kinetic
energy of the superfluid mass flow which arises because of the difference between the
densities of the solid and liquid phases.* We would naturally expect a similar phe-
nomenon in *He at temperatures below the temperature of the transition of the liquid
to a superfluid state and below the temperature of the antiferromagnetic transition in
the solid phase. The magnetism of the liquid and solid phases gives the crystallization
waves in *He some distinctive features; these features are the subject of the present
letter.

The most important of these features is the change in the nature of the crystal-
lization and melting in a magnetic field. In this case, the solid and liquid phases are
characterized by different values of not only the mass density but also another (ap-
proximately) conserved quantity: the spin density. In the high-temperature region,
because of the extremely large value of the mean free time of Fermi quasiparticles, the
liquid which appears upon the melting of the spin-polarized crystals has a high non-
equilibrium spin density.*® In the low-temperature case under consideration here,
each phase is completely ordered. Accordingly, instead of nonequilibrium spin densi-
ties, superfluid spin currents arise during the growth and melting of spin-polarized
crystals, along with the mass flows in the liquid. This is true of both the liquid and the
crystal.

The kinetic energy of the oscillations of the interface in the crystallization wave
is thus the sum of the kinetic energies of the mass flow and the spin current. In
contrast with the relative difference between the mass densities of the solid and liquid
phases, the relative difference between the spin densities is by no means small in a
magnetic field. Accordingly, the spin current begins to play a decisive role in compar-
atively weak fields, as we will see below. As a result, crystallization waves take on an
extremely unusual nature—oscillations in which the potential energy is related to
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orbital degrees of freedom, while the kinetic energy is related to spin degrees of
freedom.

We denote by z={(x,t) =& (£)e™ the equation of the boundary between the
solid phase (z<{) and the liquid phase (z> ¢ ). This interface is slightly displaced
from its z=0 position. We assume that the temperature satisfies the condition
T €Ty (Ty is the Néel temperature of the solid phase), and we assume the magnetic
field H, directed along the normal, Z, satisfies the condition H<H,, where
wHo~ Ty, and p is the magnetic moment of the *He nucleus. Under these conditions
ghe solid phase has an antiferromagnetic 42d2 structure, while the liquid phase is

He-B.

Let us assume, however, that the magnetic field is strong in comparison with the
characteristic fields at which the anisotropy vector n of *He- B aligns parallel to the
field, i.e., along the z axis, and at which the antiferromagnetic vector I of the solid
phase runs perpendicular to the z axis.

We also assume that the length of the crystallization wave, 1/k, is large in
comparison with the dipole length /,~ 1073 cm, over which the nonconservation of
the spin in the liquid phase due to the dipole—dipole interaction of the spins is influ-
ential. Since the corresponding dipole length in the solid phase, /, satisfies the con-
dition /<!, the spin currents in each phase are nonzero only in narrow regions with
thicknesses / and /; near the interface. The problem of calculating these currents is
actually a 1D problem. It can be assumed that the angles through which the spins
rotate in the equations of spin hydrodynamics’ depend on the coordinate z only.
Only the angle @, of the spin rotation around the z axis, is nonzero in both phases.

The hydrodynamic equations for the liquid (z>0) and for the crystal (z<0) are
~ L, -~ ,80
9——01 -6;2-—}-01920, O—CS 7+QS9=0, (n

where ¢; and ¢, are the velocities of the corresponding spin waves in the liquid and solid
phases, (; is the frequency of the longitudinal NMR resonance in liquid *He- B, and
0, is the frequency of the uniform oscillations of the vector 1 in the solid phase in the
plane perpendicular to the magnetic field. This frequency depends on the angle ¢,
between the normal 7 and the direction of one side of the cubic cell of the He
crystal, along which there is a uudd alternation of spins: Q2 = Q%sin’p, where Q) is a
constant.®

The flux densities of the z component of the spin along the Z direction in the liquid
phase, j;, and in the solid phase, j, are

. xc1d0  xuclae
== x g ST g (2)
where y; is the magnetic susceptibility of He- B, x. is the magnetic susceptibility of

the solid phase in the direction perpendicular to 1, and y =2u /# is the gyromagnetic
ratio.

Under our conditions, the frequency of the crystallization wave is low in com-
parison with ; and {},. We can thus ignore the first terms 6 in both equations in (1).
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The boundary conditions on these equations are that 8 (z) is finiteasz— + « , 8 (z)
is continuous at z=0, and the z component of the spin is conserved at z=0:

Jimdi= = (Se—S)E= —X—lHé (3)

Here S;=(y, /v)H and S;= (x/v) H are the equilibrium spin densities in the crystal
and the liquid, and & is the velocity of the interface. We have used the condition
Y. >X:- The energy density of the spin waves in the solid phase is given by

=g 4[] v

The energy density in the liquid, E;, is found from (4) by replacing y, by y;, ¢, by
¢, and Q; by ;.

Solving Eqs. (1) under the boundary conditions formulated above, substituting
the solution into (4), and integrating the energy density over z, we find the following
expression for the spin part of the kinetic energy of the crystallization wave:

(4)

gkm splg!z

where the quantity
i H

_ 5
eyt +ely; )

sp—

plays the role of the spin part of the “mass” per unit surface area.

The potential energy of the crystallization wave,

1 2
gpot:‘ZK(k)[ gl ’

is determined by the surface stiffness @ , as in *He.! This stiffness evidently varies only
slightly upon the ordering of the phases at low temperatures. Here we have®
k(k)=ak>.

The frequency of the crystallization wave is given by

2k ak? 6
o" (k) =37 Tk (6)
where M (k) =M, + M, and M, is determined by the kinetic energy of the superfluid
mass flows, as in 4He M ~(Ap)2/p|k| where Ap=p.— p;, p;is the density of the
crystal, and p, is that of the liquid. Since the condition Ap < p holds, we will use the
letter p, without a subscript, to denote the common value of the density:
P=PI=Pc-

The general expression for the mass M (k) can be written in the form
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M= 1[ LASNCTARIN 7)
=f (Ho) *(p) &

where we have introduced a characteristic length

I=xre1/ (e +cx1 )

and a characteristic field

Ho=(c/x ) (pxpn'*

The characteristic length / is smaller than the dipole length in the liquid, /p~ ¢/}, by
a factor of only several units. The characteristic field H; is on the order of the ex-
change field: uHy~Ty.

We assume that the magnetic field satisfies the condition > HyAp/p, i.e., that
the parameter e=HyAp/(pH) is small in comparison with one. Spin currents then
dominate the mass in (7) over a broad range of wavelengths satisfying the inequality
kl> €. The spectrum of the crystallization waves, w(k), is linear, o =uk, with a wave
velocity

&’ 172 HO
u=(—p—]) T:f (8)

Only under the condition kI <€* can we ignore the contribution of spin currents, and
only under this condition does the usual law! © « &*? hold.
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