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The ratio of the cumulant moments of the multiplicity distributions of partons
to the factorial moments exhibits some qualitatively distinct features

(minima and maxima) when higher-order terms of the expansion of
perturbative QCD are incorporated in the nonlinear equation for the generating
function. The correspondence between these results and experimental

data is discussed.

Describing the multiplicity distribution of particles produced in high-energy in-
elastic processes remains one of the most important problems in quantum chromody-
namics (QCD). In the lowest-order log-log approximation the theory predicts a dis-
tribution much broader than those which have been observed experimentally' in
ete™ collisions. It was recently shown?’ that the theoretical distribution becomes
narrower if the nonlinearity of the equations for the generating functions is taken into
account correctly in QCD. A new characteristic of the distributions, H,=K /F,, was
proposed in Ref. 3. This is the ratio of the cumulant moments of these distributions to
the factorial moments. It turns out to be extremely sensitive to subtle details of the
distributions and to small variations of the factorial moments. A minimum of this ratio
has been predicted3 at g~5, and this minimum has been verified experimentally.* The
experimental data have also revealed oscillations in H, at large values of ¢, while it was
concluded in Ref. 3 that H, becomes asymptotically constant when only the lowest-
order terms of the Taylor-series expansion of the generating function are retained in
the corresponding nonlinear equation.

We show below that this difference in qualitative features of the function H,
disappears when higher-order terms of the expansion are taken into account. These
terms also give rise to oscillations. The reader can see the idea quite easily by imag-
ining how the oscillations of an ordinary cosine would be reproduced progressively
more accurately at progressively larger values of its argument through a systematic
account of higher-order terms in the Taylor-series expansion. We restrict the discus-
sion in this letter to the case of gluodynamics, ignoring quarks (which play a relatively
minor role®). We make no claim, therefore, that we are attempting a quantitative
description of experiments (see also Ref. 5). Our approach is o estimate the nonlin-
earity in the equation for the generating function G(z) more accurately (than in Refs.
1 and 3). In gluodynamics, this equation is

1
G (5,2)= fo dELE — D () 1 [Gly+In(1 =€), 21G(y+1n&, 2) — G(3, ) ],
(1)
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where y(l,=2Ncas /m, ais a running coupling constant, N.=3 is the number of colors,

D(E)=(1~-E)[2—£(1—-£)] is the regular part of the kernel, the prime means the
derivative with respect to y=In Q/Q, (Qy=const), and Q is a large characteristic
transverse momentum of the gluon jet.

The generating function is defined by
G )= 2 P (1+2)", (2)
n=0

where P,(y) is the distribution of partons in the gluon jet. The factorial and cumulant
moments are related to G(z) by

> A
G(p2)=1+ Zlamn(y))q, (3)
g=1%

=
In G(z)= 2121—,1(4<n(y)>‘1, (4)
g=171

where (n) is the mean multiplicity of the partons in a jet with a given y.

Expanding G in a Taylor series around the point y, and carrying out some
straightforward calculations, we find from (1)

y
G'(y>=G(y)[ f_ dy' i) GO —11-2mP3 [G(y) ~1]

+7% 2 I,,G‘"’(w]ﬂ% 2 L.G™(GM(y), (5)
n=1\ mn
where h;=11/24,

f ELE~" — B (£) lIn"(£)In™(1—£),

mn n' m'

__f dE[E'—20,(&) 10" (1-§)

= (=" [2=27" 237 E(ng 1),
and {(n)=Z2,_, m~"is the Riemann zeta function.

Dividing both sides of Eq. (5) by G, and differentiating with respect to y, we find
the equation

n=2

[lnG»]"= ’}%[G(}’)—I—Z}I G'(y)+ z (—1)"h, G(")(y)

) (6)

mn=1

o0 G(M)G(n) 4
¢ F e S

where h,=|I,_,{ forn > 2, and h,,,= |1,,,|. In going over from our original equa-
tion, (1), to (6) we ignored only terms of the type d;f(z)(y)/dy~yo(y)
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Let us examine the expansion parameter in Eq. (6). For this purpose we note that
only the quantity { n) depends on y in Egs. (3) and (4), since F, ,and K are constant
over y by virtue of KNO scaling. Differentiating it with respect to y, we find

d n nn—1) 1 7/
(Ty;(’l)q:(?’q) (1 7 v y

where (n)=exp( [?y(y')dy’), and ¥ is the anomalous QCD dimensionality. With
y=vo=const we find (n)=exp(yyy) and d"(n)4/dy"=(yyq)"{n)? The quantity
x=7g, not the perturbation-theory parameter v, is the actual expansion parameter, as
was mentioned in Ref. 1 (this point was actually utilized in Refs. 2 and 3). Expres-
sions for ¥ and ¥’ in terms of y, in higher orders are given in Ref. 3. We recall, in
particular, that we have y=7,+0(73) and ¥’ = —hly8+0(7/3).

)(n)" (7

Equation (6) was solved in Ref. 3 to within terms on the order of x%. The terms
with N> 2 in the first sum and the entire second sum were discarded. The solution
leads to H, with a single minimum, at ¢~ 5, and with an asymptotically constant value
'/th as ¢ - oo (Ref. 3).

We now take account of terms of the next higher order in Eq. (6). The latter
becomes

[In G)"" =12 [G—1-2/,G" +h,G"' — G + 1y (G'(In G)*)") (8)

or, after we use (3) and (4),

(@47 VK=V | F 1 —2hiqy+hy (@ + a7 ) — b (V' + 387y +q7"") ]

g—1
+hy kz Cl;Kq—ka(Q"k)k'}’(Q?’z+27')}, %)
=1

where C'q‘ =g! /k! (g—k)! are the binomial coefficients. The coefficient #,; can be cal-
culated very accurately by writing it in series form:

N 7 8 i 1 1 1

=3+~ &2 a1 T2(n—2)(n=3)
For convenience, we introduce the notation k,=K,/(g—1)! and f,=F o /(g—1)!
The cumulant and factorial moments are related by a well-known equation, which
takes the following form in terms of our new notation (k, and f, MR

]z0.8812.

g—1
fq‘:kq+ kzl k‘lfkkq——k' (10)

Discarding only the terms of order x° in (9), and using (10), we find yet another
relation between k, and f,:

R HY hy h
k= ‘I——TTkakq k[ 7;0(3 “)

where

(11)
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Equations (10) and (11) thus unambiguously determine the behavior of the two
functions k, and f, and thus the behavior of their ratio H,. We have found the
function H, by numerical calculations; the results are shown in Fig. 1.

A characteristic feature of the ratio H in this approx1matxon, and a feature which
distinguishes this ratio from that in a lower approximation, is the oscillatory behavior
at large values of g, instead of the tendency toward a constant asymptote. We should
point out that the first minimum is shifted toward g=4. The oscillation amplitude
increases with increasing g, while the oscillation period decreases to the extent that at
g>14 we begin to see a change in the sign of H, at each successive value of 4.

The qualitative picture, with oscillations of the function Hq, which was first noted
in an analysis of experimental data, is thus reproduced in this order of the QCD
expansion. In addition, we find a prediction that the sign of H, changes upon each unit
increment in g at large values of ¢. This prediction can be explained by analogy with
the behavior of H, in events with a fixed multiplicity,® since the main peak in the
P, distribution at large values of ¢ “looks™ infinitely narrow; this circumstance leads
to a change in the signs of the cumulants.

We wish to stress a difference between Egs. (10) and (11). While the first gives
a purely mathematical relationship between the moments, the second is determined by
the dynamics of the process, in the case at hand by the QCD equations. The latter
equations also lead to oscillations, in contrast with, say, a negative binomial distribu-
tion, whose moments do not oscillate.® The period and amplitude of the oscillations
observed experimentally may point out ways for modifying the equations for the
generating functions in QCD.

The effect observed in the present paper turns out to be very sensitive to small
perturbations. For example, the results change substantially if we set ¥’ =0, i.e., if we
assume that the coupling constant is not a running constant. Although the oscillations
at comparatively small values of ¢ remain, in a slightly different form, the solution
“cuts off” at large values g=15, leading to negative values of the factorial moments,
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in contradiction of their definition. A similar cutoff can be seen at much lower values,
g=35, in a previous study,” in which a different approximation was used to solve Eq.
(1). This result emphasizes just how accurate and systematic one must be in dealing
with terms of the same order of magnitude in this equation. It is extremely important
to note that the magnitude and qualitative behavior of H, turn out to be very sensitive
to the slightest changes in F,, even at comparatively small values of ¢, which are
difficult to distinguish in the standard approach. The function H, should be used to

bring out subtle features in multiplicity distributions.

We end on a note of caution, regarding attempts to compare Fig. 1 directly with
experimental data. Such a comparison is not possible at a quantitative level, since the
numerical values may be altered by the incorporation of quarks, higher-order terms of
the expansion, and possibly confinement. On the other hand, we believe that the very
fact that a “quasi-oscillatory” behavior of the function H, arises in higher orders of the
theory deserves attention and further study.
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