Properties of a hot hadron vacuum
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For nucleons, as for electrons in semiconductors at high temperatures, the
energy gap separating nucleon states from antinucleon states is blurred.

The blurring stems from a restructuring of the spectrum of nucleons in the
dense medium of thermal pions. The equation of state of the hadron
vacuum has an end point; i.e., there exists a limiting temperature 7, above
which a hadron vacuum does not exist even in a metastable state. A
deconfinement temperature is estimated.

1. According to the present theoretical understanding, a deconfinement, i.e., a
phase transition from a gas of hadrons to a gas of quarks and gluons, occurs at high
temperatures 7 (Ref. 1). The deconfinement temperature T, has been estimated in the
bag model’ under the assumption that the density of nucleon-antinucleon pairs is
exponentially small at m < T <M because of the large difference between the mass of
nucleons, M, and that of pions, m (m <M ). On this basis one can ignore the effect of
nucleons on the phase transition, and one can interpret deconfinement as a phase
transition from a dense gas of pions to a gas of quarks. We show below that this
approach requires refinement, since the gap 2M separating the nucleon and antinu-
cleon states decreases at T"> m. This decrease leads to a sharp temperature-induced
increase in the densities of nucleons, #, and antinucleons, 7.

We consider a hadron vacuum, for which we have n=17. The densities » and 7 are
governed by the value of the effective nucleon mass, M*, which in turn depends on 7.
Below we derive the T dependence of n and M* for 7> m,

*
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and we estimate an upper limit on the temperature T, (we are using a pion system of
units, with i=c=m=1),

M(IO)I/Z
T; < ——ZFg—ETio, (2)

where g~ 1 is the pion-nucleon interaction constant. At 7> T, a hadron phase of the
vacuum cannot exist even in a metastable form; i.e., T’y is a temperature corresponding
to an absolute instability of a hadron vacuum. Deconfinement occurs at a definitely
lower temperature 7., so the estimate in (2) also imposes a limit on T:
T.< T, <250 MeV.

Since the time scale for the collision of heavy ions is short, deconfinement is a
highly nonequilibrium phase transition. From the experimental standpoint, we would
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be interested in determining not the equilibrium deconfinement temperature 7', but the
temperature of the absolute instability of hadron matter, 7. A rapid heating of
hadrons to 7> T, > T, results in deconfinement without a prolonged stage involving
the formation of large nucleation centers of the quark phase. The transition is of the
nature of a thermal explosion or, more precisely, the breakdown of a hadron vacuum.

The pronounced increase in the density of nucleon—antinucleon pairs at 7> m
suggests an interesting possibility for diagnostics of hot hadron matter, not at the time
of its expansion® but in the early stages of the collision of nuclei, through measure-
ments of the spectra of penetrating particles,* i.e., photons and leptons, which form as
a result of the annihilation of these pairs. These annihilation particles are precursors of
deconfinement; they carry information on how the parameter M* depends on the
energy at which the nuclei collide and on the temperature of the nuclear matter [see
Eq. (1)].

2. To see the essence of the matter, it is convenient to look at the analogous
problem of electrons and holes in a semiconductor at a high temperature 7. When the
electron—phonon interaction is taken into account, tails arise on the density of electron
states deep in the band gap. The gap in the spectrum, which has clearly defined
boundaries at T=0, becomes blurred as 7 increases.” The analogy here is complete:
electrons —nucleons, holes— antinucleons, phonons— pions. A nucleon, as a particle
with a spectrum E;:M 24 P, is an elementary excitation against the background of
zero-point vibrations of the pion field, i.e., against the background of a cold vacuum.
At T'=0 there exists a gas of real thermal pions, which a heavy nucleon can absorb
without undergoing any substantial change in momentum P, by virtue of the condition
M'> m. The energy of the nucleon, E, on the other hand, changes dramatically, by an
amount ~ 7, in the course of each such absorption event; as a result, this energy
departs from the mass shell E=E,. In other words, a nucleon against the background
of a hot vacuum is no longer characterized by a well-defined spectrum of E,. However,
crude characteristics of the nucleon such as the density of states p(w) and the average
occupation numbers n, can be found correctly even at 7540, by relating them to the
retarded nucleon Green’s function® G¥(w):

1 r» p(e)de 1 (o p(w)do
O I 3)

w—et+iy’ 7 (0+E)/TI+1°
The integration over p is determined by the nucleon density n:
d3p s MT 3/2 M A
n=4f”p(2—'n')§’ no= (Z—ﬂ-) exp(—T), (4)

where n is the value of n at 7' <M, found without consideration of the pion-nucleon
interaction, with p(w)=m0{(w). That interaction can be taken into account on the
basis of the well-developed diagram technique for the analogous problem of the effect
of thermal phonons on electrons in metals and semiconductors. Serving as the pion
Green’s function is the quantity D(k,»), which is an analog of the phonon function®

->k -»k > >
Dikw) =g T TTD). (5)
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where ¢ and 7 are the spin and isospin matrices of the nucleons, and w;
(wi: 1+k?) is the spectrum of pions. The diagram technique developed to account
for the electron—phonon interaction® simplifies substantially in this case, since we can
ignore the recoil of the nucleon as a result of the emission or absorption of a pion
(M>m). As a result, the nucleon Green’s function GX depends on essentially the one
variable o=E—E,,, not on E and p separately:

GR(w)= (6)

o—3%(w)+iy’
32  (€—1)"de

2R(ﬂ))=zﬂ—2 IW[GR(0+6)+GR(w—e)]-

Expression (6) is valid in the linear approximation, in which the density of nucleon—
antinucleon pairs is low, and we do not need to concern ourselves with the renormal-
ization of the pion spectrum in the nucleon field.” In addition, expression (6) incor-
porates the contribution to Z® from only those diagrams which lack a crossing of pion
lines. This approximation is justified in Ref. 8. The argument here is that the vertex
representing the emission of a pion by a nucleon contains a factor (k)7 [see Eq. (5)],
where s and T are the spin and isospin matrices. Since these matrices do not commute,
each diagram which has a crossing of pion lines is smaller by a factor of 3X3=9 than
the corresponding diagram without such a crossing. Expression (6) also ignores the
presence of the A resonance in the amplitude for pion-nucleon scattering. All these
effects have been analyzed. It has been found that incorporating them simply reduces
T, [see Eq. (2)] and increases the values given below for p(e) [see Egs. (8) and (13)]
in the interior of the band gap.

Expression (6) is a closed nonlinear equation for the function =#(w). The density
of states p(w) is determined in terms of the solution of this equation:

()= (o)
PR =0 "ReZ (@) 7+ (@)’

y=ImZ. (7)

3. Solutions of Eq. (6) can be derived in the limits of low temperatures (7 <1)
and high ones (7> 1). For low T, the density of the pion gas is exponentially small,
and we can ignore Re I, along with o, in (7). In this case the deep tail on the density
of states satisfies the Urbach law’

2

A lo| 3g
plo)=m = p(lo]exp| ——|, A=5—, |o|>1. (8)

T

From (6) we find an equation for the pre-exponential factor ¢:

d
3%2—5, 0>0. (9)

A? (o
¢>(w)=w3+3j (0—e€)

0
A solution of this equation is the power series

2 4
Y PUSTLANTLICN (10)
= IR TR &
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Substitution of (8) and (10) into (3) and (4) yields the density of nucleons, »:

MMt M
2030 s e )

n(T)=no(T)(1+ (D)
In the limit 7' -0, the nucleon density » does not become equal to ny(7'), so the “gas”
expression for ny(T') has no range of validity. Expansion (11) is carried out in terms
of the large literal parameter M?> 1. A deep tail arises on the density of nucleon states
p(w) even in first-order perturbation theory in the pion—nucleon coupling constant
g An analogous effect occurs in solids: Even in first order in the electron—phonon
coupling, a deep tail arises on the density of electron states in the band gap of a
semiconductor. However, since the fine-structure constant is small (a=1/137), this
effect goes unseen against the background of competing multiphonon effects.

4. At high temperatures T > 1, the characteristic values w~ T in (6) are higher
than ex 7. It is therefore legitimate to use a static approximation. The equation for G
becomes an algebraic equation:

G (w)=0—ViG(w),

) 2/12 w o’do _g21'r2T4 .
Vo(T) =3 fo exp(o/T)—1_° 10 ° (12)

At T > 1 the role played by the gas of pions is thus equivalent to a random, long-wave,
spin-isospin potential. The functions p(w) and #(T') are found in terms of the solu-
tion of Eq. (12):

1 602 172
P((l)) :7(; (1'—4__1/(2)) s

372 2VO
n(T)ZHO(T)W (—V—O) exp—i,—. (13)

The rough estimate of 7' in (2) corresponds to the vanishing of the width of the band
gap for the density of nucleon states, p(w): M =2Vy(T4). When the width of this gap
is on the order of T, ie., at T— Ty~ T3, /M, the density of nucleon—antinucleon
pairs is so high that we must take into account the softening of the pion spectrum in
the field of these pairs.” The problem becomes quite nonlinear, since the renormaliza-
tion of the pion spectrum causes an even greater increase in the density n(7T'); i.e., the
creation of hadrons is an avalanche process. Using the technique developed in Refs. 6
and 7, we can find the change in the spectrum of pions in the field of nucleons by
calculating the pion polarization operator. For the values of k& of interest here, this
change reduces to a replacement of @, in (5) by @:

_4n(T)

~2 2
=1 1—v)k5, =
Wy +( v) v Vo(n,T)

(14)

The T dependence of the density of nucleons at 7> 1 is given by expression (13)
again, except that the parameter Vy(7) in (12) is replaced by V(T n):
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Vo(T)
VolnT) = =57 SR L ) (15)

Analysis of Eqs. (13) and (15) in light of (12) and (14) shows that an equation of
state of the hadron vacuum, i.e., the functional dependence n=n(T) for the density of
nucleon—antinucleon pairs, exists only at T < T;. The value of T is close to T, in

(2):

Tro, Tio
TszkO (1——M—ln -”T) (16)

At T=T,, the derivative of n(T) with respect to T becomes infinite. Consequently,
the temperature T'=T, is the limiting temperature for the equation of state of a
hadron vacuum. Here are the limiting values of the parameters n; and v, [see Eq.
(14)] at the point T';:

8 T,
nk—n(Tk)——gz Vk—"V(Tk)—TéM (17)

Using the inequality T, <M [see (2}], we conclude from (17) that the renormaliza-
tion of the pion spectrum in the nucleon field, (14), is only slight up to the singular
point T=T,.

In summary, for a hadron vacuum there exists a limiting temperature T above
which an equation of state n=#n(T) does not exist.
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