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A 2D percolation model successfully describes the depinning of vortices in thin
films of type-II superconductors when there is a continuous distribution of
pinning forces over a finite interval, and under certain other conditions. This model
predicts a universal power-law current—voltage characteristic E=(j— j.)”
(y=~1.3-1.6) for the resistive state near the critical current j.. This prediction
agrees satisfactorily with experimental data on high-T',. superconductors. © 7995
American Institute of Physics.

1. Some recent experimental studies of the resistive state of high-T.
superconductors,' including thin films," indicate a power-law nonlinearity of the initial
regions of the current—voltage characteristic above the critical current:

Ux(j=jo)”. (1

This behavior stands in contrast with that of conventional (low-temperature) type-II su-
perconductors, which typically have an exponential resistive current—voltage character-
istic. In relatively weak magnetic fields H<<H ,(T"), where H ., is the upper critical field,
the numerical value of the exponent y depends weakly on the type of high-T'. supercon-
ductor and on the quality of the sample, lying in the interval y=1.2—1.5 (Ref. 1). These
results indicate that the behavior in (1) is universal, by analogy with critical phenomena
near the points of second-order phase transitions.

In the present letter we show that current—voltage characteristics of this sort can
arise in thin films of type-1I superconductors if the film thickness is smaller than or on the
order of the magnetic-field penetration depth. In this case the problem of the pinning (or
depinning) of vortices is effectively a 2D problem, and the transition to the resistive state
is associated with a viscous flow of vortices in a 2D percolation structure formed by a
random distribution of the forces of the one-particle core pinning, F,, over a finite
interval.

p

A flow of vortices (depinning) becomes possible because of the formation of con-
nected regions (a percolation cluster) with values of F, below a certain critical F .. This
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approach makes it possible to express the exponent 7y in terms of universal critical
exponents of 2D percolation theory, and it leads to a satisfactory quantitative agreement
with experiment.'

2. We consider a thin film of a type-II superconductor, whose thickness d is far
smaller than the magnetic-field penetration depth N ~\(&/1,)"2, where \,, is the London
depth, ¢ is the coherence length, and /, is the electron mean free path. We assume that
point centers of a vortex-core pinning, randomly distributed in the film, have a continu-
ous distribution with respect to pinning force F, over some finite interval
0<F,<F,. This assumption means that for any fixed F,<F,,, the film can be parti-
tioned into two phases: a “black” phase, for which the Lorentz force satisfies
F =j®y/c>F,, where @ is the flux quantum, j is the transport current density, and ¢
is the velocity of light; and a “white” phase, in which the condition F; <F, holds.

Since the values of F p» are different for different pinning centers, i.e., since the
pinning force is nonuniform and varies in a random way over the plane of the film, there
must exist a critical F,. such that under the condition F,<F, the black phase forms a
connected structure of channels which traverse the entire sample in the direction perpen-
dicular to the transport current (Fig. 1a). In this case, under the equality?

F,+F,=F|, @)

where F 7= M is the viscous-friction force for a vortex, there can be a steady-state flow
of vortices at a velocity

v=_(j®o/c—F,) 7. 3)

Figure 1b shows the directions of the force F;, of the vortex velocity v, and of the
transport current j. Here it is being assumed that the force F,, is strong enough that we
can ignore the contribution from regions in which vortices are accelerated and deceler-
ated as they interact with pinning centers. Furthermore, we are assuming magnetic fields
which are weak enough (H<H ;) that we can ignore the forces of the interaction be-
tween vortices (this is the regime of “one-particle” pinning).

The critical current j. is determined by the critical pinning force F,:
Je=cF,.1®q. 4

Below we consider the behavior of the vortices near the critical current, under the con-
dition

sz(j—jc)/jc<l' (5)

According to general ideas from percolation theory, the basic resistance of the two-
phase black—white medium above the percolation threshold in samples with dimensions
on the order of the correlation length L is due to long bridges of the black phase (Fig. 1a).
Here L is to be understood as the distance over which there is a self-averaging of physical
quantities, so that we have® L~ 7Y, where v is the critical exponent for the correlation
length (v=4/3 in 2D systems), and the parameter 7 is a measure of the proximity to the
percolation threshold:

T=(P=p)/p.<l1. ©
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FIG. 1. a: Two-dimensional percolation structure in a system of centers which pin Abrikosov vortices in a thin
film (d<\;). A steady-state fiow of vortices can occur in the black regions (this is the ‘“‘black phase”).
I—Infinite cluster ABCDG; 2—*dead ends”’; 3—additional regions (shaded regions) of the black phase which
arise upon an increase in the Lorentz force (the transport current); ABDG—the part of the infinite cluster in
which there can be a steady-state flow of vortices, in the case of a fixed direction of the Lorentz force. b:
Schematic diagram of the percolation structure. BC—A part of the infinite cluster in which vortices cannot
move. As the Lorentz force (the transport current) increases, a new region of the infinite cluster, BD, which is
compatible with the motion of vortices, arises. Here L is the correlation length.

Here p is the concentration of the black phase, and p. is the critical concentration, at
which an infinite black percolation cluster forms.

In this model, the quantity p is given by
Fp
P=L D(F,)dF,, M

where D(F ) is the distribution of pinning centers with respect to F,. In particular, for
a uniform distribution D(F )= /F pm = Const, the parameters 7 and r are the same. For
any smooth distribution they remain proportional to each other near the percolation
threshold, where we have (j—j.)<j..

The connecting bridges consist of N, links,* where N~ 7~ %1, with @;=1 in mod-

els of the Nodes—Links—Blobs type,*"® and with a,=1 in the 2D version of the Weak-
Links model,” where ¢ is the critical exponent of the conductivity (£~ 1.33).

3. Let us find the energy which is dissipated as the vortices traverse a bridge of
length I=aoN,, where a is a length scale of the variations in the field of pinning forces.
In the case at hand, this length scale is on the same order of magnitude as the average
distance between pinning centers. The energy dissipated in the traversal of one vortex
over a time #; is
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! i FC
Ql=j°F,,udr=f F,]dx=lj P (FL—F,)D(F,)dF,, (8)
0 0 0

while the time required to traverse the bridge, #,, is given by

1o { Fpe
t0=fo dt=J0dx/v=7)ljop D(F ,)dF ,/(F .~ F,). ©9)

For a uniform distribution D(F )= 1/F ,,, we then find
Q\=IF312F .., to=(lIF,,)In(1/7). (10)
The concentration of vortices is V/®,, and the number of vortices in a bridge is
n=(B/®y)ayl~(adB/®y) ™,

where B is the magnetic induction. Consequently, (on the one hand) the rate at which the
energy of all the vortices over an area L? is dissipated is

0=nQ,/ty=aoBF3112q®oIn( /7). (11)

On the other hand, we can express O in terms of the electric field E and the current j
(Ref. 2):

Q=jEL” (12)
Comparing (11) and (12), and using j~j., I~7 * ,and L~ 7", we find
a BF2 l -— -C 7 .
0 pc (J J ) /In( Je ), (13)

E= - ~| — —
27j. Dol In(1/7) Je J=Je

where
y=2v—a,. (14)

In Nodes—Links—Blobs models with v=4/3, we thus find y=2v— 1~ 1.66, while for the
Weak-Links model we have y=2(4/3)— 1.33~1.33.

However, we should note that the Lorentz force which “pushes” the vortices is
always in the same direction, so vortices cannot move in regions of bridges which are
directed opposite the force F; (see region BC in Fig. 1b). We should accordingly replace
the standard percolation model by the “diode” percolation model.? The latter incorpo-
rates only those links in which the motion is directed along the Lorentz force. In this case
the structure of the infinite cluster changes: The new parts of the cluster required here
arise as the Lorentz force increases (see ABDG in Fig. 1a). In the Weak-Links model we
then have, in place of (14),

’y=2V_L—t+, (15)

in which we have v, ~1.10 and ¢,~0.63 according to the numerical calculations of
Refs. 8—11. We thus have y=~1.57 (in place of the value y~1.33 for the isotropic
Weak-Links model).

4. In thin films of a type-II superconductor with a thickness smaller than the
magnetic-field penetration depth, power-law current—voltage characteristics can be ob-
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served in the resistive state in weak fields H<H ,,. As was mentioned above, current—
voltage characteristics of this type, with an exponent y=1.2-1.5, have been observed
both in thin films of high-T, superconductors and in high-T, single crystals.! This result
may be a consequence of the layered structure of the latter samples. However, whether
the 2D percolation model is valid for describing the depinning of vortices in layered
superconductors requires a special analysis.

In conclusion we wish to thank Yu. M. Genenko, A. L. Kasatkin, V. M. Pan, V. L.
Pentegov, and V. F. Solov’ev for a discussion of the results and for useful comments. One
of us (A.A.S) is indebted to A. G. Stanley for sending some reprints.
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