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The modification of the electron spectrum caused by twinning of a metal crystal
is discussed. A mechanism for the occurrence of a localized

superconductivity at a twin plane is proposed. © 1995 American Institute of
Physics.

In 1981, Khaikin and Khlyustikov! observed a surface superconductivity at a twin
plane in several metal crystals, with transition temperatures above the bulk values. In an
effort to describe the superconductivity phenomena in the presence of twin planes, Buz-
din and Bulaevskii® proposed a modification of the Ginzburg-Landau equations, assum-
ing that the electron—interaction constant increases at the twin boundary. However, it was
later shown that this constant would have to increase by a factor of 30 in order to explain
the observed increase in transition temperature.® On the other hand, it had been suggested
in the paper by Khaikin and Khlyustikov' that surface (Tamm) states might play an
important role in the onset of a localized superconductivity. This idea was utilized in Ref.
4, but no microscopic derivation or further development was offered. The temperature
dependence of the critical supercooling field indicates that a modification of the electron
spectrum in the twins plays an important role.” In this letter we wish to show just which
change in the electron spectrum associated with twinning leads to the localized super-
conductivity.

The superconducting transition temperature in an electron system with an interaction
constant \ is the maximum temperature at which a nontrivial solution of the linearized
integral equation for the order parameter A(r) arises:
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Here i,(r) is the wave function of an electron in state « with energy &, , reckoned from
the Fermi level; the summation is over all states; and w=nT(2n+1), where n are
integers.

If the twin plane coincides with the x=0 plane, then a solution which depends on x
alone satisfies the equation
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where Ko(x—x") is the kernel in the absence of twinning. This kernel is significantly
different from zero only at |x—x'|<§&,, where the right side is the coherence length. In
the isotropic model, this length is 0.18 Vv/T, and the quantity
K (x,x")=K(x,x')—Ky(x—x") is significantly different from zero at |x|, |x'|<&,. In
contrast, near the transition temperature the order parameter A(x) varies significantly
only over large distances, on the order of &(T)=7n&(1—T/T.)~ "2, where we have
7=0.74 in the isotropic model. Integral equation (3) can thus be transformed into a
differential equation:

d? 1 +oo
(T—— 772§gd-—xf)A(x)=-l;A(O)f_mKl(x,x’)dx’. (4)

Here =In(7/T,)~(T—T,)/T., and v is the density of states at the Fermi surface. For the
isotropic model, it is mpo/27?, where p, is the Fermi momentum. We thus find the
following result for the transition temperature:
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Vr=gme Ko K= | | Kie') (5)

Let us consider a free-electron model in which the twin surface can be described by
a J-function potential well or barrier in the x=0 plane:

A= —v2- X 8(x). (6)

For k>0, the free states, described by the wave functions \/Esinpxx and
\/Ecos[px|x|+y(px)], where y=arctan(«/p,), are joined by a bound state with a wave
function vkexp(—«lx]) and an energy (p2— k?)/2m , where p is the momentum in the
(py,p.) plane.

We can thus find the values of K| and the transition temperature:

K m | 1.14w, K iy 1 . 1.14wg )
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where w, is the Debye frequency, which determines the usual cutoff of the summation
over frequency in (2). For k<0, i.e., for a potential barrier, we would have K;<0, and
the superconductivity at the surface would be suppressed.

Let us plug in some numbers. We set £~ 1075 cm and pg~ 10® ecm™!; «/p, could
hardly be greater than 0.1; and the logarithm is at best less than 5. The relative increase
in the transition temperature is therefore negligible, on the order of 10~8. The reason is
that the coordinate-dependent density of states at the Fermi surface increases only neg-
ligibly near the twin plane, since the contribution from bound states is cancelled almost
entirely by the decrease in the contribution of free states.

We have considered several anisotropic lattice models in the approximation of
tightly bound electrons. The results basically reduce to an insignificant renormalization
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(on the order of unity) of the quantities in (5) and (8). Even if the Fermi surface passes
near singular points, so a logarithmic singularity arises in the 2D density of states of the
localized electrons, and even if the Fermi level passes through it (this situation is exceed-
ingly unlikely), then a factor on the order of In [(the Fermi energy)/T.]< 10 would arise
in (7). Our basic parameter is k=a 'In(€'/€), where a is on the order of the lattice
constant, and € and €’ are the overlap integrals of the atoms in the interior and near the
twin plane, respectively. However, the primary result of our analysis of lattice models is
the formation of bound states whose energies are not only smaller than but also greater
than those of the free states. There are even energies above the top of the band. This
circumstance is the key to an explanation of the mechanism for localized superconduc-
tivity.

Let us assume that the top of the filled lower band or the bottom of the empty upper
band lies near the Fermi level. If the extreme energy of the bound states of the second
band, reckoned from the bottom (the top), which is equal to F x3/2m, (the subscript 2
means the second band, not the conduction band), is greater than the distance between the
bottom (the top) and the chemical potential, then bound electrons of the second band
lying at the Fermi level also participate in creating the superconducting state. A term with
a kernel formed from the wave functions of the bound states of the second band then
appears in Eq. (3):

myK; 1.14w,
In
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This expression is also valid for lattice models, since the bound states lie near the bottom
or top of the second band, and the anisotropy can be eliminated through a coordinate
transformation.

Making use of the degeneracy of kernel (8), we write the order parameter as the sum
A(x)=A(x)+ A exp(—2x,|x|). Making use of the slow variation of A,(x) over dis-
tances on the order of &, and 1/k,, and also using the condition 1/xk<€&,, we find
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Here we have ignored the surface contribution, which is inconsequential, as was shown
above. The quantity T, is the transition temperature in the isolated system of bound
electrons of the second band. This temperature is determined by the effective density of
states of these electrons (which is independent of the position of the Fermi level, pro-
vided that the latter is above the bottom or below the top of the 2D band):
v, =m,k,/4mw. Comparing with the density of states of the conduction band (which is
mpo/2m? in the isotropic case), we find that T', is probably smaller than the bulk value of
T, but it may also be greater, if the effective mass of the electrons of the second band is
sufficiently large.

From (9) we finally find
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If the interactions of the electrons of the different bands are not the same, then the
quantity \,, appears in the expression for T,, a coefficient of X /X, arises on the right
side of (10), and X\ |, remains in the expression for the bulk value of T.

(10)

The equivalent thickness of the superconducting layer of a twin plane in tin was
estimated as a function of the temperature on the basis of Meissner effect in Ref. 1. The
minimum value of this thickness at the temperature of the local transition was about 10a,
where a is the lattice constant. This thickness can be identified with 1/k, which is the
effective thickness of the A,(x) layer. Using &3~ 10°a, and wq/ T~ 100 for tin, we find
\/;~ 0.3/In(77T,) from (10). This result agrees with the observed vatue \/;w 0.1 for tin.

The results derived here indicate that the formation of a ““2D metal” at a twin plane
in a semiconductor crystal is a realistic possibility, if the energy shift of the bound states
is greater than the half-width of the band gap. This metallic state might be manifested in
a variety of effects, but it would be most prominent in the 2D superconductivity. The
transition temperature would then be given by (9).
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