Contribution of the quark-gluon operator to the effective $\Delta S = 1$ nonleptonic Hamiltonian with $m_t \sim M_W$

A. A. Penin and A. A. Pivovarov

Institute of Nuclear Research, Academy of Sciences of the USSR, 117312, Moscow

(Submitted 1 July 1991)

Pis'ma Zh. Eksp. Teor. Fiz. 54, No. 3, 121–123 (10 August 1991)

The contribution of the quark-gluon operator to $H_{\Delta S=1}$ is calculated in a theory with a heavy t quark (whose mass is on the order of that of the W boson). The effect of this operator on the characteristics of nonleptonic decays of K mesons is evaluated.

Incorporating hard gluons is recognized as being extremely important for finding a description of nonleptonic decays of K mesons. Calculations in the leading-log approximation in a six-quark theory yield the following expression for the effective low-energy Hamiltonian:

$$H_{\Delta S=1} = -\frac{G_F}{\sqrt{2}} \sum_{i=1, i \neq 4}^{6} (\xi_c C_i^c + \xi_t C_i^t) O_i, \tag{1}$$

where $\xi_q = V_{qd} V_{qs}^*$, V is the quark mixing matrix, and O_i is a set of four-quark operators for which we do not need explicit expressions.

Expression (1) was derived by sequentially splitting off the W boson and the heavy quarks from the light sector of the theory under the assumption $m_q \ll M_W$, where m_q is the mass of any of the six quarks. Analysis of the experimental data available shows, however, that the mass of the t quark is at least comparable to that of the W boson. In the standard model, the current limitation on the mass of the t quark is $m_t > 89$ GeV. As a result, the model of Refs. 1 and 2 is not satisfactory for constructing an effective Hamiltonian for nonleptonic decays of t mesons. An effective Hamiltonian was constructed under the assumption $m_t > M_W$ by Paschos t al. However, they did not consider the quark-gluon operator of leading dimensionality: $t = m_s \bar{s}_R G_{\mu\nu} \sigma^{\mu\nu} d_L$, where m_s is the mass of the t quark, and t is the stress tensor of the gluon field. Actually, this operator does not contribute to t in the single-loop approximation if the theory contains only light quarks (t in the single-loop approximation if the mixing matrix. It turns out that in the case t in the operator t appears in t in the single-loop level, in an annihilation diagram. The corresponding auxiliary contribution t is

$$\Delta H = -\frac{G_F}{\sqrt{2}} \frac{1}{16\pi^2} \xi_t F_t T, \tag{2}$$

$$F_t(x_t) = \frac{1}{3} \frac{1}{(x_t-1)^4} (\frac{3}{2}x_t^4 - 9x_t^3 + \frac{9}{2}x_t^2 + 3x_t + 9x_t^2 \ln x_t),$$

where $x_t = m_t^2/M_W^2$. The function $F_t(x_t)$ is zero at $x_t = 0$ and also has the values $F_t(1) = 1/4$ and $F_t(\infty) = 1/2$.

The calculations were carried out in the R_E gauge.

Let us find ΔH at low energies, at which the hadronic matrix elements must be evaluated. We will use the renormalization group in the leading-log approximation. The matrix of anomalous dimensionalities for the operator T and the four-quark operators O_i is block-diagonal. The operator T is not mixed with the operators O_i in the leading-log approximation. It satisfies the renormalization-group equation

$$\left(\mu^2 \frac{d}{d\mu^2} - \gamma\right) T = 0. \tag{3}$$

When the normalization point is changed, the operator T, as the solution of renormalization-group equation (3), transforms in accordance with

$$T(M_W) = \eta(M_W, \mu)T(\mu), \quad \eta = \left(\frac{\bar{\alpha}_s(m_b)}{\bar{\alpha}_s(M_W)}\right)^{\gamma/b_b} \left(\frac{\bar{\alpha}_s(m_b)}{\bar{\alpha}_s(m_b)}\right)^{\gamma/b_b} \left(\frac{\bar{\alpha}_s(\mu)}{\bar{\alpha}_s(m_c)}\right)^{\gamma/b_b}, \quad (4)$$

where $\mu < m_c$ and $b_{N_F} = 11 - \frac{2}{3}N_F$. The anomalous dimensionality of the operator T was calculated in Ref. 6; it is $\gamma = -14/3$. The final expression for ΔH is

$$\Delta H = -\frac{G_F}{\sqrt{2}} \xi_t C_T i m_{\bullet} \bar{s}_R G_{\mu\nu} \sigma^{\mu\nu} d_L, \qquad (5)$$

where $C_T = \eta F_t / 16\pi^2$.

How does ΔH affect the characteristics of nonleptonic decays of K mesons?

The operator T appears in $H_{\Delta S=1}$ with the coefficient $\xi_t = s_1 c_1 c_3 s_2^2 + s_1 s_2 s_3 c_2 e^{-i\delta}$. Numerical estimates of the mixing angles $s_2 < 0.1$ and $s_3 < 0.041$ indicate that the contribution of the operator T to the real part of the amplitude for the decay $K^0 \to \pi\pi$ is suppressed in comparison with the contribution from four-quark operators by a factor of 10^{-2} and can be ignored. In a description of the deviation from the superweak mechanism for the breaking of CP invariance, however, mixing with the t quark might play a perceptible role. Let us compare the effect of the operator T with that of the four-quark operators O_i on the ratio ϵ'/ϵ , of the characteristics of the CP breaking. Among the various operators O_i , it is O_6 which dominates the ratio ϵ'/ϵ . Let us examine the relative sizes of the contributions of T and O_i to the expression for ϵ'/ϵ :

$$< 2\pi$$
, $I = 0|\text{Im}H_{\Delta S=1}|K^0 > |_{O_6}$

$$=-\frac{G_F}{\sqrt{2}}\operatorname{Im}\xi_t(C_6^t-C_6^c)<2\pi, \quad I=0|O_6|K^0>=-\frac{G_F}{\sqrt{2}}\operatorname{Im}\xi_t(0.05-0.16 \text{ GeV}^3).$$

The matrix element $\langle 2\pi, I=0|T|K^0\rangle$ can be reduced through a systematic reduction of the meson fields to

$$<2\pi, I=0|T|K^0>=\sqrt{3}\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)\frac{m_s m_\pi^2}{f_K(m_u+m_d)}m_0^2.$$
 (6)

Substituting in the numerical estimates $m_s=130$ –200 MeV, m_0^2 (1 GeV) = 0.8 \pm 0.2 GeV, and $m_u+m_d=10$ –15 MeV, we find

$$< 2\pi$$
, $I = 0 | \text{Im} H_{\Delta S=1} | K^0 > |_T$

$$=-\frac{G_F}{\sqrt{2}}\operatorname{Im}\xi_t C_T < 2\pi, \quad I=0|T|K^0> = -\frac{G_F}{\sqrt{2}}\operatorname{Im}\xi_t(0,003-0.01 \text{ GeV}^3).$$

For convenience in making a comparison with the contribution of the operator O_6 , we take the values of the quantities in the expression for ϵ'/ϵ at the point $\Lambda_{\rm QCD}^2 = (0.1 \text{ GeV})^2$, $\overline{\alpha}_S(\mu) = 1$, $m_t = 100 \text{ GeV}$ (Ref. 5).

The matrix element in (6) has been evaluated in the chiral limit, which is not a good approximation for the K meson. Corrections for the nonzero mass of the s quark might, in general, be important. We thus need to use a better low-energy model for evaluating the matrix element. We also have a second comment, which concerns the choice of the point for the normalization $\overline{\alpha}_s(\mu) = 1$ (Ref. 5). The perturbative corrections to the coefficient functions of local operators become poorly controllable at this point, and incorporating them may change the relation between the contributions of O_6 and T by a factor of the order of 2.

It is clear from these estimates that the effect of the quark-gluon operator on the characteristics of kaon decays may be quite large. Accordingly, if the theory contains a heavy t quark, we would need to use the complete set of operators of the leading dimensionality in order to describe processes which involve a breaking of *CP* invariance.

Translated by D. Parsons

¹A. Vainshtein, V. Zakharov, and M. Shifman, Nucl. Phys. B 120, 316 (1977).

²F. J. Gilman and M. B. Wise, Phys. Rev. D 20, 2392 (1979); 27, 1128 (1983).

³C. Jarlskog, CERN-TH-5918/90.

⁴CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 64, 142 (1990).

⁵E. A. Paschos, T. Schneider, and Y. L. Wu, Nucl. Phys. B 332, 285 (1990).

⁶A. Yu. Morozov, Yad. Fiz. 40, 788 (1984) [Sov. J. Nucl. Phys. 40, 505 (1984)].

⁷E. A. Paschos and U. Turke, Phys. Rep. 178, 145 (1989).