Solutions of the equations of the chiral-field model
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The equations of the model of 2D chiral fields with values in an arbitrary
semisimple Lie group G are reduced to modified Nahm equations. A wide class of
explicit solutions of these equations comes from solutions of the equations of a
finite Toda chain.

1. In this letter we describe a new class of solutions of the equations of the
model of 2D leading chiral fields. These models are important for studying nonpertur-
bative effects in quantum field theory (Ref. 1, for example).

We write the equations of the model of leading chiral fields in the form proposed
by Faddeev and Semenov-Tyan-Shanskii.> For this purpose, we consider the vector
fields 4, and B, (u,v,... = 1,2) in the space R>® with values in the Lie algebra & of
Lie group G. The equations for these fields are*™*

Fu = —|B,, By), D,B, =0, €wDyB, =0, (D

where F,,, = [D,,D,],D, =3, + [4,,], and €;; = — &, = 1. That these equations
are equivalent to the standard equations of the chiral model was proved in Refs. 2
and 3.

Interestingly, solutions of Egs. (1) simultaneously give us steady-state solutions
of the nonlinear Schrodinger equation in the 3D space R>! for a field ¥ in the asso-
ciated representation of Lie algebra & which is interacting with gauge fields of Lie
group G. This assertion was proved in Ref. 5. We also note that we can go over from
the space R*° to the space R "' of signature ( + — ). The entire discussion below for
R?° can be repeated with essentially no change for the case of R"'.

2, For the fields 4, and B, we consider the ansatz
Au = TS(P)elw v, Bu =T (P)enuavP - Tz(P)au% (2)

where the ¢-dependent functions 7, (¢) (a,b,... = 1,2,3) take on values in Lie algebra
&, and ¢ is an arbitrary function of the coordinates x,,.

We substitute (2) into (1). One can easily verify that in this case Egs. (1) reduce
to the equations

Talp + (Ta - f:chTc)aMoauP =0, (3)
where /7 =f3'= —f{?=1,and A=4,4,.

Equations (3) evidently hold if the following equations hold simultaneously:
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Ta = f:chch (42)
Ap=0. (4b)

Equations (4a) are known as modified Nahm equations. They can be found from
Nahm’s equations themselves® through the trivial substitutions T, —iT,, T,—iT,,
T,— T,. Equation (4b) is the standard Laplace equation in R*°. We can take the real
or imaginary part of an arbitrary analytic function as a solution of the latter equation.

3. Equations (4a) have a representation of the Lax type. To demonstrate
this, we introduce the matrices L(A) =i(1 +A%)T, — (1 — AT, — 2iAT,, M(1)
=iAT, + AT, — iT;. Equations (4a) can then be rewritten as Lax equations with a
spectral parameter 4 (Refs. 7-9):

£ = (L), M), 5)

where L=dL /d¢. It follows that the spectrum of matrix L(A) does not depend on ¢.
It also follows that the characteristic equation det{L(A,¢) — I ] =0, which deter-
mines the spectral curve, is an invariant of Eq. (5). The methods developed by Dubor-
ovin, Krichever, and Novikov (see, for example Ref. 10) can therefore be applied to
Eq. (5), and we can write a general solution of Eq. (5) in terms theta functions.

A particular case of this class of solutions can be found by making use of Ward’s
observation® that it is possible to reduce Eqs. (4a) to equations of a finite Toda chain.
The equations of a generalized Toda chain for an arbitrary simple Lie algebra were
introduced by Bogoyavlensky.!' Using the results of Ref. 11, we can easily write an
ansatz for T, in terms of a Cartan—Weyl basis of the Lie algebra ¥ = % & C, which
reduces (4a) to the equations of a Toda chain. As an example we write out an explicit
expression for the ansatz for matrices T, with values in Lie algebra ¥ = su(n).

Following Ward,” we introduce the matrices hi, e, e ; (j=1,.,n) with the

components (%;),, =8,,8,,, (€),,=8,,6,, 1, (j=1l..n—1), (e,),, =8,,6,,
(eﬁj)pq = 61.’[,_15“ (]: 1,...,n — 1), (€¥n)pq = an,pﬁl,q' We set

= ‘Z“J’(‘J’ tes;), D= Z“J‘(‘J‘ —e—j) —an(en — e_n), (6)
j=1 j==1

n n
Ty=4) bihj, 3 b;=0,
=1

=1

where a; = a;(#), b; = b; ($) are real functions of ¢. We introduce the matrices L = i-
T, —iT;, M =T,. 1t is not difficult to verify that Egs. (4a) can be rewritten as Lax
equations for ansatz (6),

L =L, M), €))

in this case without a spectral parameter. These equations are the same as the equa-
tions of an ordinary finite periodic Toda chain (Refs. 11 and 12, for example). If we
seta, = 0in (6), then Eqs. (7) become the equations of a finite aperiodic Toda chain,
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for which the explicit form of the general solutions is known.'? We do not have room
here to write out these solutions (see, for example, Refs. 12 and 13). We would like to
point out that by formally taking the limit n— « in Eqs. (7) (this is the limit used in
the quantum theory of chiral fields) we would obtain the standard equations of a
infinite Toda chain, whose solutions are again known.

Ansatz (2) thus makes it possible to reduce the equations of a leading 2D chiral
model to modified Nahm equations (4a), which can be integrated by methods of the
inverse scattering problem, since it is a trivial matter to integrate Laplace equations
(4b). The solutions of Egs. (4a) and, in particular, of Egs. (7) give us a new class of
local solutions of the equations of the leading 2D chiral model and static solutions of
the nonlinear Schrodinger equations in R %', The question of the boundary conditions
and that of the topological charge of these solutions require separate study.

I am indebted to R. Jackiw for sending me a copy of Ref. 5, which initiated the
study whose results are reported above.
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