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An expression for the effective range derived here generalizes the Smorodinskii
formula to the case of potentials with a Coulomb repulsion and an arbitrary
angular momentum /. With increasing charges of the particles, there is an
exponential renormalization of the low-energy parameters. These parameters are
extracted from experimental data for the dt, d *He, and ca systems.

1. The resonance nuclear reactions dt—na + 17.59 MeV and d *He— pa + 18.35
MeV are important to problems in thermonuclear fusion, g catalysis, astrophysics, etc.
Their cross sections near the s-wave resonances “He*(3/2% ) and °Li(3/2 %" ) have
recently been measured with record-high accuracy.'™ It follows from an analysis of
the experimental data that the Coulomb interaction causes a pronounced renormaliza-
tion of not only the scattering length but also the effective range in these mirror
systems (in contrast with the case of the pp and pn systems). The reason is that in this
case the range of the nuclear forces, ry, is comparable to the first Bohr radius.

2, Coulomb renormalization of the effective range. The expansion of the effective
range for the charged particles is™®
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Here ay =#/Z,Z,¢’'m is the first Bohr radius” /[ is the angular momentum,
171 = 1/kay is the Sommerfeld parameter, k = (2E}"?, Dc () = [exp(2my) — 1] 7!
is the penetrability of the Coulomb barrier,
h= 210+ (in) = o] & 3 L Byl
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(|9l > 0, — /2 <arg 7 <m/2), By, are the Bernoulli numbers, and aj*” and r{* are
the nuclear-Coulomb scattering length and the effective range.

It can be shown that the value of #{° at the time at which a bound / level appears
can be expressed in terms of the wave function y, with a zero energy:
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c; =2"(41+3)/3Q21 + D [I1Y2] + 1)!]. At r>ry, i.e., outside the range of the nuclear
forces, we have y,(r) = r"§, (p), where
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= (8¢/ay)"’*, and K, (p) is the modified Bessel function [the decay of y,(r) as
r— oo for all J, including / = 0, stems from the Coulomb barrier]. “Turning off”” the
Coulomb interaction corresponds to @z — o and p—0. Using &,(0) = 1, we find that
relation (2) becomes the Smorodinskii formula®’ (/= 0) and the formula of Ref.
8(/>1) for short-range potentials in this limit.

Let us take a closer look at the case of s scattering. We denote by R the mini-
mum distance at which the strong interaction is still negligible in comparison with the
Coulomb interaction. We then find from (2) a limitation which is useful for extracting
r., from experimental data:

Tes < aBH(PC)s (3)
where p. = (8Rc/ay)"? and

1 1 f® ~ 1 _ 7 ,
H(p) =3~ 5/ € (t)edt (o> 1) 3~ %‘ P+ gt ) (3)
P

(Fig. 1). We thus see that at 7y >a, the effective range is exponentially close to its
limiting value of az/3.

A corresponding assertion holds for higher-order coefficients of expansion (1).
For example, for s-wave scattering one can show, by a semiclassical method, that in
the limit ry >ay we have

©o
KE(K) =5 ok — 2h(n)

7=0

while for j>1 the following estimate is valid:

Aaj = j !Byl —a;=0(6), &= 2 exp|—(32rn faB)!/?] < 1. (4)

The reason why Ac; is exponentially small is that the Coulomb barrier is cut off at
rry.
3. Low-energy parameters of aa scattering, In the aa system there is a narrow
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FIG. 1. Plot of the function H [see Eq. (3')] versus R./a, = p2./8.

Breit-Wigner resonance, *Be(0* ), with an energy’ E=E, i['/2, where
E =92124+005keVand " = 6.8 + 1.7 eV. Here 7y =~a and § = 2.8 X 10~ 2. Con-
sequently, we assume, in accordance with (4),

21rDcct.gﬁc, = Qg — Aa1k2 - Aagk_‘ - Aa3k° + . (5)

Using the experimental data in Ref. 10 on the scattering phase shift for £ < 1000 keV
(or, correspondingly, kr, < 1), using the value of E,, and setting Aa; = 0, we find the
optimum set of parameters ;, which corresponds to y* = 0.33 (Table I). In particu-
lar, we find T = 3.6 eV as the width of the “ground” state of *Be; this result agrees
within two standard deviations with the experimental value. Extracting a more reliable
value of I' from scattering data will require an improvement in the experimental
accuracy at E <400 keV.

4. The mirror systems d*H and d*He. If a system contains open channels, the
expansion coefficients in (1) are complex. For / = 0 we write K, = a(k?) — iB(k?),
where

a(k?) = ap + ayk? + agk* + ..., B(K?*) = Po + B1k® + Pak* + ... .

It then follows from the unitarity condition that we have 8(k?) 0.

The resonance s wave plays a dominant role in elastic d7 and d *He scattering and
also in fusion reactions. Restricting the discussion to that wave, we find the following
result for the astrophysical function:'"
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TABLE L

System di d°He aa
ag 24,04 12,02 3.627
rN 3.63 3,97 3,34
Ges 76+ -31 65+1-7,3 | 1,19(3)
re, |4.9-i-0.3[33-i.02] 102
R¢ 5.6 6,3 2,0
o 0.270 0.184 3.05(-3)
Bo 0,110 2,08(-2) 0
aj 0,102 0,138 0,141
P 6,98(-3) 8.57(-3) 0
ag - 5,0(-3) 1,16(-2)

Note. The values of ag, ry, etc., which have the dimensionality of a
length, are in femtometers. Here the sum of the charge radii of the
particles is used as ry. The order of the number is given in parenthe-
ses: (n)=10".

as(E) = B(K*){[{a(K?) — 2h(n)]? + [B(K?) + 2xD.(n)]*} 1. (6)
Using the experimental data of Refs. 14, we find sets of low-energy parameters for the

dt and d*He systems (Table I). The quality of the fit is illustrated by Fig. 2.
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FIG. 2. The astrophysical function (6) versus £ = £ /E. The solid lines are calculations from (6) with the
parameter values from Table I. ®—Experimental data from Ref. 1; O—Ref. 2; + —Ref. 12; \7—Ref. 3;
O—Ref. 4.
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TABLE II. Energies (in keV) of the low-energy resonances.

System dt d°He aa
En | 41.2-4.37,7 | 160—:.118 | 92.1—3 18(-3)
Ve 0,233—-1-0,665 | 0,210 —%-0,693 | 2, 86(—5) —1-2,937
Ec 59,89 239,56 1588

A matched variation of all the parameters «;, /3; makes possible a variation of
these values over a fairly wide region with an inconsequential increase in y°. As a
further test of the selection, we used limitation (3) on the range of the nuclear interac-
tion. In the case of dt scattering, for example, we have the following result for an
optimum choice (optimum in terms of a minimum of y?, y* =0.62): r,, = 5.7 fm.
This result corresponds to R, > 8 fm (Fig. 1). Such a value of R, looks physically
reasonable (in the R-matrix approach, it is customary to assume R, ~5 fm for this
system). The value of 7., in Table I corresponds to y> = 0.82.

It can be seen from Table I that the Coulomb interaction in the mirror systems
d>H and d *He causes a substantial renormalization of not only the scattering length
(this point is well known®) but also the effective range #,. Correspondingly, the
positions of the "He* and °Li* resonances are also shifted by an amount on the order
of the Coulomb energy (Table II). The energies of these resonances,” expressed in
Coulomb units, E. = Z2Z2e*m/#°, are fairly close together, as can be seen particu-

larly clearly when we use the dimensionless variables v = — /(2E /E.) ~'/?, which is
a generalization of the principal quantum number (for virtual levels in a repulsive
Coulomb field we would have k= —i/nand v=n=1,2,...).

D Below we discuss the case of a Coulomb repulsion (Z,Z,>0), and we use a system of units with
fi=m=a, =1

2! The values of E; and v, in Table II correspond to the so-called leading pole. In addition to that pole, the
scattering amplitude has a pole R’ as well as 2 Coulomb series of poles,'" which condense on the elastic
limit (k =0).
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