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The transverse conductivity of a semiconductor which arises in an ultraquantum
magnetic field as a result of the interaction of electrons with an ionized impurity is
calculated for the case of Boltzmann statistics. The conductivity is dominated by
low-energy electrons undergoing a random walk in the impurity potential. The
field dependence (up to 11 T) and the temperature dependence (over the range 20—
160 K) of the resistance have been measured for n-InSb samples with electron
densities 7 ranging from 9 % 10'?to 1.2 X 10" cm ~*. The experimental results are
described well by an expression derived here.

Our understanding of the kinetics of electrons in strong magnetic fields in which
only the lower Landau subband is filled, and ionized impurity centers are responsible
for the scattering, is presently undergoing reexamination. The results found by Adams
and Holstein," which were regarded as classic for a long time, have proved to be
incorrect in this case. Some new expressions for the transverse conductivity of a Fermi
gas were derived in Ref. 2; correlations in the scattering were taken into account. In
the present letter we examine the case of Boltzmann statistics. These cases are funda-
mentally different, as we will see below. Since the magnetic length is much shorter
than the screening length in the ultraquantum limit, the motion of the electrons across
the magnetic field is treated as a drift in crossed fields, i.e., the external magnetic field
and the electric field of the impurity centers.?

THEORY

To find the conductivity of a Boltzmann gas, we need to take an average over the
4
energy:

Oxz = —/czDu(e)g(e)af/ae de, (1

where f=A(T)exp( —e/kT) is the equilibrium electron distribution function,
D, (€) is the diffusion coefficient for electrons with an energy € in the direction across
the magnetic field (H ||z), and g(€) is the density of states. Since we have g(€) <e™ /2
and

/ fle)g(e)de = n, (2)

in the ultragquantum limit, we find from (1)
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nexp(—e/kT)
922~ | Ty Dya(e) de. )

Since the diffusion coefficient in the direction across the magnetic field is®
Dea(€) o D3(e) o €715, “4)

the integral in (3) diverges as” €—0. The divergence also occurred in Ref. 1. Adams
and Holstein introduced a cutoff at an energy found from the condition

hf1(e) ~ € (5)

where 7(€) is the relaxation time of the momentum of an electron along the magnetic
field. However, structural features in the density of state lead to large-scale fluctu-
ations of the impurity potential in addition to this smearing. The characteristic width
of this smearing region, as in the absence of a magnetic field,” is on the order of the
scale of these fluctuations, multiplied by the electron charge:®

Ur ~ eQ/xrp ~ ez(Nr3D)1/2/(nrD) ~ U:/‘(kT)I/‘. (6)

Here Q~e(Nr*)'/? is the deviation from the average charge of the impurity centers in
a sphere of radius r, N is the density of impurity centers U,=e’N>">/kn'”*, and « is the
dielectric constant of the lattice. The maximum amplitude U, is exhibited by fluctu-
ations with dimensions on the order of the screening length r, = (4me’*n/kkT) ~'*.
We assume k7> U,,. The classical description of the impurity potential, on the basis of
which expression (6) was derived, is valid when the wavelength 4 of an electron with
an energy ~ Uy is much smaller than the screening length: A €r,. We thus have

U, n2 4/5
kT > Uy (i%) , 7

where €, = me*/2k*#* is the Bohr energy. The energy found from condition (5) is
much smaller than Uy.

The cutoff should therefore be made at energies on the order of U;.. Here, how-
ever, we are ignoring the contribution to the conductivity from electrons with low
energies €, <€ < Uy (€, is the mobility threshold). The motion of such an electron
along the magnetic field H is obstructed by hills in the impurity potential (Fig. 1a),
but an electron can circumvent these hills as the result of a drift across the magnetic
field” (Fig. 1b). This electron is far more mobile across H than is an electron with a
higher energy, since, being boxed in between two potential hills, it drifts in essentially
one direction until it has traveled a distance on the order of r;, and has escaped from
one of the hills. The diffusion coefficient for such electrons is

Dgz ~rpVp ~rpcE/H ~ cUr [eH, (8)

where E~ Uy /erp is a characteristic electric field, and V), = cE /H is the electron
drift velocity. In contrast, the drift direction of an electron with a higher energy
€,> Uy, free to move along H, continuously changes (Fig. 1b). The time it takes to
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FIG. 1. a: Curvature of the bottom of the conduction band. The z axis runs horizontally, parallel to the
magnetic field. The hatched regions lie below the percolation threshold €,. An electron with an energy ¢, is
free to move along the magnetic field. An electron with an energy €,, which is boxed in between two
potential maxima along the z direction, drifts across z. b: Motion of electrons with an energy €, (at the left)
and with an energy €, (at the right) in the xz plane. The closed curves are equipotentials which bound
regions that are inaccessible to the electron with an energy €,.

move a distance ~ 7, across H is thus far longer than the corresponding time for an
electron with an energy ¢;.

To find the contribution of low-energy electrons to the conductivity, we substitute
€~ Uy into the integrand in (3) and replace the integration by a multiplication by Uy
We then find

s8/2
Tag ~ E ﬁ . (9)
H \kT

Substituting the value of U,, and using nec/H = o,, (the Hall conductivity),
we find
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U, )9/3 e19/4.,5/8 3 /4 (10)

Ozz = &0zy (Z‘f o n9/3H(kT)9/8_’
where «a is a numerical coefficient. Using o, €0o,,, we find the following result for the
transverse resistivity:

U, 9/8 SIANSIAH
Pzz = CPzy (ﬁ) = an9/5cn11/3(lcT)9/°’ (11)

where p,, = 1/0,,. According to the theory of Adams and Holstein, in contrast, this
resistivity is given by

pzs & HORN/T3/3, (12)

The relative size of the conductivity component from electrons with energies
e>U;p is

(c2n1/3/n)5/8 (_]!)1/12= (gg 1/8 (2)1/12 (6—5'9)1/‘<1 s
(hw)l/"e;,/‘s(kT)ll. n kT hw hw ! (13)

i.e., negligible. Here w = eH /mc is the cyclotron frequency, and €., = #n*" /2m.
Expressions (10) and (11) remain valid in the case in which all the magnetic sub-
bands, with the different spin orientations, are filled, provided that there is no spin-flip
scattering.

EXPERIMENTAL PROCEDURE AND RESULTS

To test expression (11), we measured p,, on #-InSb samples with various elec-
tron densities # and with various concentrations of an ionized impurity, N (Table I).
The samples were 1 cm long, about 1 mm wide, and about 2 mm thick (the thickness
was the dimension along H). Posts for the potential contacts were cut by electron
discharge machining. The machining was followed by etching in the etchant SR-4A.
The concentration of ionized impurity centers, N, was found from the results of the p
measurements with the help of the Brooks—Herring formula. For samples /-4 we used

TABLE L

Sample 1 2 3 4 5 6 7
nsg, 10" cm—3 0,086 | 0.36 | 0.91 3.4 10 30 120
Pa2, M2 cm - - - - 41 15 4,7
P30 mQ-cm 2200 | 440 73 33 - -

W, 10" om 57 |60 ] 31 | 70 | 19 | 50 | 170
Uo, K 31 | 20 | 9.5 | 105 | 115 | 19 | 27
PPy 0.17 | 0.12 | 0,045 | 0,047 | 0,067 | 0,116 | 0,142

at 50 Kand 11T
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the formula for Boltzmann statistics and the values of p at 30 K; for samples 5-7 we
used the formula for Fermi statistics and the values of p at 4.2 K (Table I). The Bohr
energy of n-InSb is 7 K. The values of U, for our samples lie in the interval 10-30 K
(Table I).

A magnetic field of 11 T was produced by a superconducting solenoid. To reach
the temperatures 20~160 K, we used a Dewar, positioned upside down in liquid heli-
um and equipped with a heater.

Most of the measurements were carried out above 20 K, where essentially all the
electrons from the shallow donors were scattered into the conduction band, as could
be verified on the basis of the Hall effect. The Hall constants changed by less than
20% as the temperature was varied from 70 to 20 K. In the absence of a magnetic
field, some of the samples exhibited a Fermi energy €, greater than 20 K. However,
since €5 falls off with increasing field in the ultraquantum limit, the electron gas
becomes a Boltzmann gas at 7> 20 K, even in the sample with n = 1.2X 10" cm ~? in
a field of 11 T. At T>20 K, the ratio p,,/p,, is much less than unity for all the
samples; this result can serve as a test of the applicability of the theory. The experi-
mental values of p.. /p,, in a field of H =11 T at a temperature 50 K are listed in
Table 1. _

The curves of the field dependence of p,, for samples 1-5 are nearly the same,
and they have the shape of the curves shown in Fig. 2. In strong fields they are
approximately linear. Above 3 T, the 30-K curve can be described by a power law
H®®, while the 70-K curve can be described by H°®, For sample 6 the curves of
P+ (H) are even more nearly linear. For sample 7, the condition for nondegeneracy of
the electron gas begins to be violated as H is lowered from 11 T, so p,, varies more
rapidly than linearly with the field.

Ia.z.z' , Q.cm
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FIG. 2. Magnetic-field dependence of the transverse resistivity p,, for sample 2 at temperatures of 30, 50,
and 70 K.
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FIG. 3. Temperature dependence of the resistivity p,, in a magnetic field of 11 T for various samples. The

curves are labeled with the electron density #, in electrons per cubic centimeter. The slope of the dashed
straight line corresponds to a p,, « T~ *® dependence.
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FIG. 4. Plot of the quantity 4 in a field of 11 T at a temperature of 50 K versus the electron density n,

according to the measurements on the various samples. The slope of the straight line corresponds to the
theoretical functional dependence p,, /N** «n™'V/5
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The temperature dependence of p,, in a field of 11 T is described approximately
by T°® over the range 20-80 K for all the samples (Fig. 3). With increasing density of
electrons and impurity centers, this dependence stretches out toward progressively
stronger fields. The faster decay of p,, on the two upper curves above 80 K, accompa-
nied by a decrease in the Hall constant, is due to an excitation of electrons from deep
donors (=60 meV), whose concentration is ~ 10" cm ~*. The subsequent increase in
Pxx 18 due to the appearance of intrinsic carriers.

To test the dependence of p,, on n and N, we plot p,,./N** versus n in Fig. 4.
The experimental points conform well to a straight line, whose slope corresponds to
the predicted n ~'® dependence. From the experimental results we can find the value
of the numerical coeflicient a in expressions (10) and (11):

a~0,3. 0))

In summary, the experimental results are described well by expression (11),
while they do not agree quantitatively or qualitatively with the results of other existing
theories.

We wish to thank B. A. Aronzon for furnishing some of the samples used in this
study.

¥ The derivation of the functional dependence D, « £ used the assumption that the Born approximation
is valid and that localization effects”® are suppressed in a Boltzmann gas. Actually, these assumptions are
not particularly important; the only important point is that integral (3) diverges.
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