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The spectrum of relic gravitational waves formed in a double-inflation scenario
might have obvious moduiations.

Double inflation, i.e., two successive inflationary stages with different inflation
velocities, is characteristic of models which contain several scalar fields or which have
terms that are quadratic in the curvature along with the scalar fields." The double-
inflation scenario can lead to fundamentally different values of the perturbations of the
energy density at long and short range."* This property qualifies the double-inflation
scenario as a candidate for explaining the probable deviation of the spectrum of den-
sity inhomogeneities at large scale from the flat Harrison—Zel’dovich spectrum.®

In order to learn about the inflationary model, it is useful to study, along with the
shape of the density perturbation spectrum, the spectrum of stochastic gravitational
waves which arise in the stage of inflation.”® This wave spectrum differs from the
density inhomogeneity spectrum in that it does not depend on the behavior of the
effective masses of the scalar fields, being determined exclusively by the history of the
expansion, a(f). It is therefore worthwhile to study possible spectra for gravitational
waves which would arise in a double-inflation scenario, especially since yet another
method was recently proposed for measuring the amplitude of these waves at a scale of
(1-3000)h ~' Mpc, through the observation of gravitational lenses.’

As a very simple example of the double-inflation scenario, we adopt a model with
the action

S=—/d‘-’ﬂ\/:a{‘;‘Vu9°V“SO+U($°)+%VuXV"X+V(X)}-

Here ¢ is a field which is dominant in the first inflationary stage. If the condition
U(@)> V(y) initially holds, this stage terminates in oscillations in the field ¢, which
dominate the situation until their energy density falls below V(y). In this model there
is accordingly a period between the two inflationary stages in which the effective
equation of state is p = 0.

If the field ¢ interacts with other fields, its decay products may be predominant in
the intermediate stage. Let us consider the fairly general case in which the effective
equation of state in this stage is p = (¢ — 1)p. The behavior of the Hubble parameter
can then be approximated by
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H,, a < ay
H= {Hl(al/a)37/2, ey <a<ay. (1)
H,, az<a

There is no such intermediate stage with a 4 <0 if U(g) is not initially much
greater than V(y). We consider perturbations of the metric 4,

Juvdztdz” = —dt? + o*(t)dz*dz; + hy,dztdz”,

4 v=0,1 2 3. 3 5j=1, 2, 3.

The part of 4, for which the conditions 4, = /| =0 hold corresponds to gravita-
tional waves. The corresponding quantum operator in the gauge 4, = O can be writ-
ten'®

hii(20) = / (‘2‘3)3 {mim;ar (F)$(F, 1) exp(ik2)

+mimja (k)$(k, t) exp(ikz) + (Herm. adj.)},

where R and L specify two polarization states, m; = e + ief>, e{">) are two purely
spatial unit vectors which are orthogonal with respect to k and orthogonal with
respect to each other and [ag (k ), @ (k )] = 6(k — % 2) (there is a similar expres-
sion in the L case).

The spectrum of the gravitational waves which have formed is determined by the
function ¢, which satisfies the equation

- 0 - 2
d+3%5+Eg0 2)
a a2

Corresponding to a vacuum state which is invariant under the de Sitter group is
the following behavior of ¢ at a <a,:

£y = an2at/2i-3/2 (g _ bk sk sk
Pk, t) = 8x°GY/ %k (H a)exP(Ha Has ) 3)

where a, is an arbitrary constant, H = &/a, and G is the gravitational constant.

Solving Eq. (2) under conditions (1) and (3), we find the spectrum of gravita-
tional waves at a>a,. This spectrum is shown in Fig. 1 for the case ¥ = 4/3 (radia-
tion). That spectrum was found analytically. For arbitrary y at H,> H,, the asympto-

tic behavior of the spectrum is

Hl/Hg, k < Haaz ,
W2 =D { F () foin [52 - ]|, Haos <k < Huon s 4)
1, k> Hia, ,

where
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FIG. 1. Spectrum of gravitational waves in the case y = 4/3, H,/H, = 10. The wave number is expressed in
units of H,a,. The mean square amplitude of the gravitational waves, |#|k*? is expressed in units of
872G "% H,, where G is the gravitational constant.

F = (4x)"2(3y/2- )75 (3222)
D = 8x2H,G'?, a=34/(3y—-2), f=n/(3v-2).

The reason for the modulation of the spectrum is that modes with H,a, <k <H,a,
drop below the Hubble horizon a second time and begin to oscillate. Since the initial
phases were synchronized by the first inflation stage, and since the oscillation time
depends on k, these modes emerge from below the horizon, with different phases.

It has thus been found that a double inflation with an intermediate slowing stage
(G <0) generates gravitational waves with a modulated spectrum. The observation of
this spectrum might provide unambiguous evidence in favor of field theories which
permit such a scenario. Moreover, as we see from (4), a comparison of the heights of
the adjacent maxima can provide information about the equation of state of the matter
which is predominant in the intermediate stage. Spectra of this type are formed not
only in the simple model discussed here but also in any other double-inflation scenario
with a sufficiently long intermediate stage of slowing. In most cases, features of the
same sort arise in the density perturbation spectrum in these scenarios.'!

199 JETP Lett., Vol. 54, No. 4, 25 Aug. 1991 M. I. Zel’nikov and V. F. Mukhanov 199



'J. Silk and M. S. Turner, Phys. Rev. D 35, 419 (1987).

L. A. Kofman and D. Yu. Pogosyan, Phys. Lett. B 214, 508 (1988).

A. A. Starobinskii, Pis’ma Zh. Eksp. Teor. Fiz. 42, 124 (1985) [JETP Lett. 42, 152 (1985)].
“L. A. Kofman and A. D. Linde, Nucl. Phys. B 282, 555 (1987).

5L. A. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Lett. B 157, 361 (1985).

¢J. M. Bardeen, J. R. Bond, and G. Efstathiou, Astrophys. J. 321, 28 (1987).

L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974) [Sov. Phys. JETP 40, 409 (1974)].
%B. Allen, Phys. Rev. D 37, 2078 (1988).

°B. Allen, Phys. Rev. Lett. 63, 2017 (1989).

9B, Allen, Nucl. Phys. B 287, 743 (1987).

'y, F. Mukhanov and M. 1. Zelnikov, Preprint BROWN-HET-768, Brown University, 1990.

Translated by D. Parsons





