Exactly integrable model of three-wave mixing
in an inhomogeneous nonlinear medium

V. M. Zhuravlev
Branch of M. V. Lomonosov Moscow State University, 432700 Ul’yanovsk, Russia"

(Submitted 2 November 1994; resubmitted 12 January 1995)
Pis’'ma Zh. Eksp. Teor. Fiz. 61, No. 4, 254-258 (25 February 1995)

A Lagrange identity for conjugate equations is used to construct a Lax
representation for an exactly integrable model of three-wave mixing in an
inhomogeneous medium with four arbitrary functional parameters: the

group velocities and refractive indices of the two primary waves.© 1995 American
Institute of Physics.

The model of three-wave mixing is frequently used to describe the interactions of
nearly sinusoidal waves in a nonlinear medium with a quadratic nonlinearity, e.g., in
nonlinear optics.! This model has been adopted widely because, within the framework of
the method of the inverse scattering problem,? it is exactly integrable in several cases of
interest for applications, e.g., second-harmonic generation.! On the other hand, the use of
the three-wave-mixing model is usually restricted to homogeneous media, since in an
inhomogeneous medium the integrability condition generally does not hold, and solutions
with initial conditions in the form of solitons are rapidly destroyed. This is true not only
of the model of three-wave mixing but also of other exactly integrable models. There is
accordingly interest in the problem of determining the type of inhomogeneous media in
which solitons can exist without being destroyed, for each type of exactly integrable
models. In the present letter we solve this problem for the model of three-wave mixing.
In addition, we resolve the question of the general form of nonlinearity for which the
equation of three-wave mixing has a Lax representation and has a soliton solution.

As the initial system of equations we consider the pair of equations
2
¢9a,- da i
_+Ui(X,f)“}‘=2 Wid;. (1)

Here a, and a, are the amplitudes of the two “primary” waves, which are propagating at
group velocities v; and v,, respectively, in the medium. The 2X2 matrix W, with the
elements w;;, describes the properties of the medium, including the self-effects and
interactions of these waves. As a result of the interaction of the primary waves in the
nonlinear medium, waves propagating at other group velocities are generally excited. In
the simplest case, only a single wave, with amplitude @, and group velocity v,, is
excited. The dynamics of this wave is governed by both the properties of the medium and
the amplitudes and parameters of the two primary waves. We consider the problem of
describing all types of media in which the dynamics of the three interacting waves is such
that set of equations (1) has a Lax representation, so waves of the soliton type can exist,
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To solve this problem, we supplement Eqs. (1) with the conjugate system of equa-
tions

)

Here the functions ¢; are the conjugates of the functions a;. Multiplying Egs. (1) by
¢; from the left in a scalar fashion, multiplying Eqs. (2) by a; from the right, again in a
scalar fashion, and taking the difference between the results, we find a generalized con-
servation law:

9 2 2

5;2 ¢iai+%2 vi(x,t)¢a;=0. 3)

i=1 i=1

This law holds automatically if
2

W W <
E"E ba;, E—_z vix,t)pa;, 4

for any function (x,t) which is differentiable and otherwise arbitrary. The appearance of
a conservation law for a combination of conjugate equations is a consequence of a
generalized Lagrange identity.

We consider the auxiliary vector function ¥ = colon(, ¢, , ¢,) along with auxiliary
2X 2 matrices with elements b;; and a vector c¢; such that the following equations hold:

ad;

ox

2
:2 bij¢j+cil/’- ®)
i=1

Set of equations (2), (4), and (5) can thus be written as two equations in terms of the
vector function ¥

a d
5;‘1’— U, T‘Pz v, (6)

where U and V are two 3X 3 matrices of the form

0 a asy 0 via; Va4,
Ux,t)=| ¢y by b, Vixn=|viey dy dp |, @)
c; by by Uacy  dy dxn

where d;;=wj;+v;b;;+v; 8;;, i,j=1,2. Set of equations (2), (4) contains the original
system of equations, (1), so auxiliary relations (5), which do not impose any additional
restrictions on the functions ¢;, ¢, and a;, have the consequence that the entire set of
equations (6) contains the original system of equations, (1). It follows that the condition
for the compatibility of system (6), which can be written as the Zakharov—Shabat ““‘zero

curvature” condition,?

U~ V. +[U,V]=0, (8)
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(where [,] is the ordinary matrix commutator), is the initial equation along with an
additional set of equations for the auxiliary functions b;; and c;. The form of these
equations can be determined through an explicit calculation of conditions (8). Equations
(6)—(8) thus form an analog of the Lax representation of the original system of equations.

If Egs. (6)—(8) are to constitute an exact Lax representation, matrices (7) must
contain an arbitrary complex parameter A which transforms system (6) into a nontrivial
system of two spectral problems with A as a spectral parameter, on which the unknown
functions a; of the original equation do not depend. These conditions hold if we assume
that only the auxiliary functions b;; and ¢; depend on . The simplest case of such a
dependence corresponds to the assumption

b“=Pl(x,t))\+Rlx(x,t), b22=P2(x,t))\+R2X(x,t) (9)

under the condition that b,, b,,, and ¢; are independent of . Substituting (9) into (8),
making the replacement a;—ia;, and using the additional reduction

af=icy, bp=bY=ias, (10)
we find the following system of complex equations:

da, dv(x,)a
Ly AN L y (eay=i0y(raat,

E ox

da, dlvy(x,t)a,] | .

T +iNa(xay=iQs(x.Na s,

da J v (x,t)a

-?9?3'}‘ -[—3T-i]+iN3(x’t)a3=iQ3(X,t)aza;k- (11)

These equations have the form of generalized three-wave-mixing equations. Here we are
using the following notation:

U3(x,t)= v l(x9t) + QZ(xvt)= vZ(x9t) + Ql(x9t)’
Q(x,1)=(v = V)P /(P —P3)=(v3—vy),
Q(x,0)=(v = V)P /(P1—P3)=(v3~v,),

Q3(x,0)=0,~0r=(v,—vy),

Ny(x,t)=DR =R, +vR|,,

NZ(x,t) = DZRZER21+ v2R2x s
N3(x,0)= (v = 0)[Ry+ Q2(Ry—R1 )]+ DR, — DR (12)
In an optical interpretation of this model, the functions N, N,, and N5 correspond to the
refractive indices of waves in a medium; in the case at hand, these indices are functions
of the coordinates and the time. The functions @, Q,, and Q5 describe the inhomoge-
neity of the nonlinear properties of the medium. The functions R(x,t) and R,(x,?) in
(12) are completely arbitrary, while the functions P,(x,t) and P,(x,t) are related to the

functions v (x,#) and v,(x,t) (the group velocities of the two primary waves) by the two
equations
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P,
ot

oP,

7
-a—t+5x—[v2(x,t)P2]=0. (13)

I
+E[vl(x,t)Pl]:0a
Accordingly, any two of the four functions P (x,t), P,(x,t), v (x,t}, va(x,t) are also
arbitrary.

In this notation, the functions w; ; take the form
wip=01a5, wy=0Qa;, w;=—DR|—v,, wp=—DR—vy,.

The entire set of relations determines the form of the matrices U and V of representation
(6)—(8) for which the latter is a true Lax representation. As result, it is possible to use the
method of the inverse scattering problem to construct exact solutions of these equations.

However, it is generally difficult to apply this method directly to the system of
equations above. We can put system (11) in a simpler form by using the transformation

(x’t)—')[el(-x9t)702(x’t)]’ (14)
ak(x,t)—>Ak[ 01(x,t),02(x,t)], k=123,

where

a, . a, .
Al[ol(x,t)702(x’t)]=P_lelRl9 A2[01(x7t)902(x7t)]=1)_2elR2, (15)

a, e
As[0,(x,1),0,(x,t)]= PP, el (Ra—Ry)

As new independent variables here we have selected 0, and 6,, which are related to

P, and P, by

3,6,=P,, 4,6,=P,
and which therefore satisfy the equations
3,60,+v,0,0,=0, 9,0,+0v,0,0,=0.
As a result, system (11) becomes

A iaar, M _aa, M M 16
90, 230 Gg, MM e T Ge, 12 (16)
This system is one version of the standard system of equations for three-wave mixing,
corresponding to the case v, =const; v,= const; R;, R,=0. We can thus first construct
soliton solutions directly for system (16) (simple solutions are discussed in Ref. 1, among
other places); then, with the help of the transformation which is the inverse of (14), (15),
we can find the amplitudes of the initial equation in the inhomogeneous medium.

Using this system, we can analyze the behavior of three-wave-mixing solitons in an
inhomogeneous medium whose properties are determined by the four arbitrary real func-
tions Ny, N,, v;, and v,. Since these functions are arbitrary, they may contain a
dependence on the amplitudes of the waves in the medium, so the medium may have
nonlinear properties which are not the same as those usually considered in the exactly
integrable model of three-wave mixing. The integrability of these equations by the
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method of the inverse scattering problem is preserved. We  assume
R;=R(x,t,a,,a,,a3), v;=v;(x,t), i=12, with an arbitrary functional dependence of
v; on x,t and also of R; on a;. We further assume that A, A,, and A, are solutions of
Egs. (16), while P, P,, and P3=P,— P, are solutions of Eqgs. (13). According to (15),
we then have |a;|=|A;|P,, and the functions arg(a;) are found from the solution of a
system of (generally transcendental) algebraic equations:

arg(A|)=arg(a;)+ R (x,t,a,,a,,a3),
arg(A,)=arg(a,) +Ry(x,t,a, ,a;,a3),
arg(As)=arg(as) +Ry(x,t,a;,a,.a3)—Ry(x,t,a,,a,,a3). (17)

In the case v;=v,(x,t,a,,a,,a3), i.e., when there is a dependence on the amplitudes
ay , the latter system of algebraic equations should be solved jointly with Egs. (13). This
requirement seriously complicates the problem of analyzing the soliton dynamics.

The simplest nontrivial use of the resulting representation to study physical prob-
lems, for which we can find solutions of system (17) in a fairly simple way, corresponds
to a functional dependence R;=R;(x,t|a,|,|a,|,|as]), i.e., to a dependence on only the
absolute values of the amplitudes. As an example of such a system we might cite a
generalized analog of the massive Thirring model.> We set

Ni(x,))=D\R=n,(a,,a5,83),
Nz(x,t)ED2R2=n2(a1 ,az,a3).

Choosing n;=|a,|*+m, and n,=|a,|?+m, under the conditions m,, m,=const,
vi=v,=const; and a;=0, we then find a system which is equivalent to the massive
Thirring model and which can be integrated by the method of the inverse scattering
problem.® We might add that in the case R;=R;(x,t,|a,|,|a,|,]a3|) a solution of Egs. (13)
can be carried out without the use of (17), even if v, and v, depend on the amplitudes
a; . Models of this type were discussed in Ref. 1; in several cases they can be analyzed
completely by this approach.

We note in conclusion that the approach discussed here can be extended to the case
of the interaction of N waves in an inhomogeneous medium. To do this, we need to
consider the original problem, (1), as the problem of the propagation of n “primary”
waves in an inhomogeneous nonlinear medium. In this case the final model would cor-
respond to the problem of the interaction of N=n(n+ 1)/2 waves, and a Lax represen-
tation would be realized in terms of (n+1)X(n+1) matrices and would contain 2n
arbitrary functional parameters (n group velocities and r refractive indices for the pri-
mary waves). Other models, e.g., one with a quadratic dispersion relation, could be
adopted as the “primary” model for wave propagation in the medium. The equations of
these models could also be incorporated in the scheme proposed above for constructing
Lax representations on the basis of a L.agrange identity.
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