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The “butterfly” anisotropy of the gap observed in the plane of the CuO, layers
in the high T, superconductor Bi,Sr,CaCu,0Og, s is not a consequence of d-

wave Cooper pairing. It is instead due to an anisotropic s-wave pairing of electrons
on a multiply connected (multivalley) Fermi surface with flat (congruent)

regions and a spontaneous breaking of the symmetry of the electron spectrum as
the result of a Peierls structural instability, accompanied by the formation

of an insulating gap along one diagonal of the Brillouin zone. The phase shift of
Josephson currents along the a and b axes observed in YBa,Cu;0;_ 5

single crystals may be due to a difference between the signs of the gap parameters
in the CuO, layers and the CuO chains. This circumstance might simulate a
d-wave pairing. © 1995 American Institute of Physics.

1. Observation of an anisotropy of the superconducting gap parameter and also
of the normal density of states in the plane of the 2D CuQO, cuprate layers in a
Bi,Sr,CaCu, 04, 4 single crystal was recently reported’ on the basis of measurements of
the photoelectron energy-loss spectra (the EELS method). According to Ref. 1, the anisot-
ropy of the superconducting gap A(k), which is centered at the I" point of the Brillouin
zone, is at a maximum in the directions of the M points and has minima of different
depths in the directions of the X and Y points of the Brillouin zone. As a result, the
inequalities Ap_p>Ap_x>Ar_y>0 hold.

It follows that the plot of the superconducting gap versus the angle 6 in the a—b
plane is a “butterfly” with a twofold symmetry axis, not a “rosette” with “petals” of
different signs and with zeros of the gap along the diagonals of the Brillouin zone (Fig.
1). The latter prediction follows from the model of a magnon mechanism for supercon-
ductivity with a singlet d-wave Cooper pairing of current carriers in the 2D CuO, layers,
as the result of an exchange of virtual excitatior.: of the spin density (paramagnons) in a
nearly antiferromagnetic Fermi liquid.>* The i iea of a magnon mechanism for super-
conductivity in ferro- and antiferromagnets with triplet p-wave Cooper pairing was first
expressed in Refs. 5-7. On the other hand, it was recently shown® that a predominant
d-wave pairing can arise in 2D systems, regardless of the mechanism for the electron—
electron interaction with a repulsion at one lattice site and an attraction at neighboring
sites.

Measurements of photoelectron spectra by the EELS method at T above the super-
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N 4 FIG. 1. Cross section of a multiply connected
cylindrical Fermi surface of a Bi,;Sr,CaCu,

iy Og .+ 5 single crystal according to Refs. 9 and 10,
within an expanded ‘“‘oxygen” Brillouin zone
= \

X rotated through an angle of 7/4 with respect to
the first Brillouin zone, along with a butterfly
angular distribution of the superconducting gap
parameter for anisotropic s-wave pairing and a
rosette for d-wave pairing?* at the " point.
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conducting transition temperature T, have shown' that an anisotropy of similar shape (a
butterfly) is characteristic of the electron density of states at the Fermi level, v(Ef); i.e.,
those measurements yield vr_ > vp_ x> vr_y>>0 in the normal state. This circumstance
has made it possible to parametrize the anisotropic superconducting gap by means of an
exponential formula of the BCS type:!

A(8)= & exp{— l/v(6)g}, 1)

where @ and g are adjustable interaction parameters.

At the same time, the shape of the cylindrical, multiply connected (multivalley)
Fermi surface of a Bi,Sr,CaCu,0;, s single crystal was reconstructed in Ref. 9 by
angle-resolved photoelectron spectroscopy (ARPES). This surface has a fourfold symme-
try axis and is essentially the same in shape as the Fermi surface calculated theoretically
in Ref. 10 (Fig. 1). This Fermi surface has flattened regions in the I'-X and ['-Y
directions, which are brought into coincidence upon a shift by the “nesting”” vector Q. It
also has regions with an anomalously weak dispersion (“flat zones™) near M points.
They were interpreted in Refs. 9 and 11 as lines of saddle points in the electron spectrum.

In the present letter we show that the anisotropy of both the superconducting gap
parameter and the normal density of state in Bi,Sr,CaCu,0Oyg, 5 single crystals which was
observed in Ref. 1 is the result of (on the one hand) an anisotropic s-wave pairing of
electrons on a multiply connected Fermi surface and (on the other) a spontaneous sym-
metry breaking of the original spectrum as the result of a structural (Peierls) instability
accompanied by the onset of an insulating gap and a superlattice along one of the diago-
nals of the Brillouin zone, because of the flattened regions of the Fermi surface.

In this letter we suggest that the phase shift of 7 in the Josephson currents along the
a and b axes which has been observed in YBa,Cu;0,_; single crystals in several
experiments'2~!* may be a consequence of different signs of the anisotropic gap param-
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eters in the 2D CuQ, layers and in the ordered 1D CuO chains in the case of an s-wave
pairing of current carriers, rather than a consequence of d-wave pairing.

2. It follows from experimental data’ and numerical calculations' that two types of
valleys exist within the first Brillouin zone of the layered Bi, Sr,CaCu,0Og., 5 single crys-
tal: four equivalent valleys at the corners of the Brillouin zone (near the X and Y points)
and four valleys near M points (Fig. 1). The relatively wide valleys of the first type (their
width is W> 1 eV) are of “oxygen origin” and stem from a direct overlap of the p-wave
orbitals of 02~ oxygen ions in the plane of the CuO, layers (along the diagonals of the
primitive cell). The valleys of the second type result from a hybridization of d-wave
orbitals of Cu®* ions with p-wave orbitals of O°~ ions (along Cu—O bonds). According
to Refs. 9 and 15, they are anomalously narrow (dispersionless) near the M points of the
Brillouin zone.

The coexistence of wide and narrow zones (valleys) which overlap in energy but
which are hybridized only weakly in momentum space is a necessary and sufficient
condition for a plasmon mechanism for superconductivity.'® That mechanism involves a
Cooper pairing of majority carriers through an exchange of low-frequency virtual exci-
tations of the charge density (acoustic plasmons).

According to Refs. 9 and 10, the multivalley Fermi surface of single crystals of the
Bi,Sr,CaCu,04 4 5 type has a fourfold symmetry axis in the a—b plane. This assertion
contradicts experimental data,' according to which the superconducting gap and the nor-
mal density of states have twofold symmetry axes. However, it should be kept in mind
that the “oxygen” valleys near the X and Y points have flattened regions of the Fermi
surface, which are brought into coincidence by a shift by the vector Q. This nesting effect
can lead to a structural Peierls instability and to the formation of an insulating gap along
one of the diagonals of the Brillouin zone (along the I'-X or I'-Y direction), with a
spontaneous breaking of the original symmetry of the spectrum.

3. To describe a superconductor with an anisotropic, multiply connected Fermi sur-
face which has nesting along certain directions of the Fermi momentum, we use the
Bilbro—McMillan—Nakayama model,'®!® as in Ref. 17, in an analysis of the magnetic
properties of Laves and Chevrel phases. We denote by 3, and A, the insulating and
superconducting gaps on the flattened (congruent) regions of the Fermi surface in the
oxygen valleys (near the X and Y points), and we denote by A, the superconducting gap
on the Fermi surface of the “copper—oxygen” valleys (near the M points).!” Here is the
system of equations for %, A, and A,, which incorporates virtual electron transitions
between different sheets of the Fermi surface in the BCS approximation:

S\[1= 50 (V=30)(5)]=W, @)
Ay=—Lp(V,+O)A (S~ v,UALI(A), 3)
Ay=— v, VoA I(A)— v UAI(S)). @

Here V| and V), are the matrix elements of the intravalley electron-electron interaction,
U and U are matrix elements describing two-particle electron transitions between
different types of valleys and between coincident flat regions of the Fermi surface of the
oxygen valleys, V and W are matrix elements describing the direct (Coulomb interaction)
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and one-particle transitions between the flattened regions of the Fermi surface which have
become insulating, »; and v, are the average values of the density of states on the
congruent and incongruent regions of the Fermi surface, 3, = /3, 71 +A71, and the integral
I in(2)is

TS
13- f\/§2+zzmﬂ’ e

&)

where E is the cutoff energy of the Coulomb interaction (on the order of the Fermi energy
Ep). The integral I differs from 7 in that the upper limit E is replaced by the energy of
the effective electron—electron attraction, @<E, due to the exchange of virtual bosons
(phonons, plasmons, excitons, etc.).

In contrast with Refs. 17 and 18, we assume that the probabilities for one- and
two-particle intervalley transitions are small, and that the states of different valleys are
mixed only slightly, in a sufficiently pure single crystal. In the case of a predominant
attraction near the Fermi surface in the energy region {< @, in which we have V,,<0,
U<0, and U<0 (but V>0 and W>0 in the region &< E), and under the conditions
|V,2/>|U],|T], and V>W, we find a transcendental equation for 3, from (2) in the
limit 7—0 (under the condition %> A):

1=, (V+3|0)[(E+VE2+3%)/3,]. ()
Assuming A, <@ (but %> @), we find from (3)

V2|U|A2 ln(Z(D/Az)
—tn (V| +|O)ml(a+ Vo +22)/5,]

Comparing (6) and (7), we easily see that the denominator in (7) is positive under the
condition |V, |<V and increases with increasing 3, . In other words, the superconducting
gap A in the regions of the Fermi surface which have become insulating (along the
I'-Y direction) decreases with increasing 3, to a minimum value (under the condition

3.>®)

™

l=

AT=3,|U|A, In(28/A,). (®)

Since we have |U|<|V,|, we find from Eqgs. (4) and (7) that we have AT"<A,, where
the right side is the superconducting gap in the regions of the Fermi surface which have
not become insulating (near the M points).

At the same time, it follows from Egs. (3) and (4) under the conditions %,=0 and
v |Vi|<v,|V,| that we have A,> A, where the right side is the superconducting gap on
the flattened regions of the Fermi surface in the absence of an insulating gap (in the
[-X direction). Accordingly, for completely realistic relations among the parameters,
this anisotropic model of s-wave Cooper pairing leads to the same relations among the
values of the superconducting gap in various symmetry directions of the Brillouin zone as
in the experiments of Ref, 1.

A, =Ar_y>A=Ap x> ATP=Ar_y>0. ©
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FIG. 2. Cross section of the multiply connected
cylindrical Fermi surface of a YBa,Cu,;0,
single crystal in the system of 2D CuO, layers
(solid lines) and flattened sheets of the Fermi
surface in the system of 1D CuO chains (dashed
curves), according to Ref. 22. Shown at the cen-
ter of the Brillouin zone are suggested angular
distributions of the superconducting gap param-
eters in the 2D CuQ, layers (a rosette with posi-
tive petals) and in the 1D CuO chains (negative
petals).

In other words, this model explains the observed (butterfly) angular distribution of the
superconducting gap (Fig. 1), incorporating a spontaneous breaking of the symmetry of
the electron spectrum due to a Peierls instability. This model also describes the corre-
sponding @ dependence of the normal density of states at 7>T¢ but T<T,, where the
right side is the critical temperature for a structural transition (7),>T¢) when the dip in
the density of states in the regions of the Fermi surface which have become
insulating? is taken into account, and under the condition v,> v, . Empirical formula (1)
is thus confirmed. Finally, the dependence of the degree of anisotropy of the supercon-
ducting gap on the concentration of doped holes which was observed in Ref. 1 can be
linked at a qualitative level in this model with a dependence of the shape and size of the
Fermi surface in different valleys on their degree of filling, i.e., on the position of the
Fermi level E (cf. Ref. 8).

4. In YBa,Cu;0,_ 5 single crystals with <1, a spontaneous symmetry breaking in
the spectrum occurs because of an ordering of the 1D CuO chains along one of the Cu-O
bonds (the b axis). Here one observes a significant anisotropy of the conductivity in the
a-b plane (the conductivity is higher along the b axis than along the a axis). This
situation is evidence that an insulating gap does not form on the flattened parts of the
Fermi surface in the system of 1D chains (possibly because of a fairly pronounced
corrugation of the Fermi surface). At the same time, numerical calculations on the band
spectrum?? of YBa,Cu;0, and experiments on photoelectron spectroscopy?® and the de
Haas—van Alphen effect’® show that the cylindrical parts of the Fermi surface corre-
sponding to a quasi-2D spectrum of electrons (holes) in the CuO, cuprate layers (Fig. 2)
do not have a pronounced nesting. In this case we can use system of equations 3), (4)
with 3, =0 and U=W =0, under the assumption that quantities with a subscript 1 refer
to the 1D CuO chains, while quantities with a subscript 2 refer to the 2D CuO, layers.
The anisotropy of the superconducting gap, A,(#), is at a maximum along the I'-Y
direction (i.e., along the normals to the flat sheets of the Fermi surface). It is zero in the
perpendicular direction, I"-X. The superconducting gap A,(6) is at a maximum toward
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the corners of the Brillouin zone, at which there are four valleys with a high density of
states near s points. It is at a minimum in the ['-X and ['-Y directions, in which the
Fermi surface is open (Fig. 2).

Let us assume that the strongest electron—electron attraction is in pairs of CuO,
cuprate layers because of an interaction with dipole-active optical vibrations of 0%~ ions
and with collective low-frequency excitations of the charge density of nearly localized
heavy charge carriers in anomalously narrow 2D zones,'® positioned near s points,”
while a Coulomb repulsion is predominant in the CuQ chains, so that we have V,<0 but
V>0 and” U>0. We then find the following results from (3) and (4) (under the
conditions |V,|>U and T—0):

V2A2 ln(zd)/Az)

Al=— 1+V1V1 ln(ZE)/IAll) ’

1
A =26 exp[ Vi } (10
1t follows that the signs of the parameters A; and A, are opposite (e.g., A;<0 with
A,>0). If the maximum absolute value of the superconducting gap A, induced by
intervalley transitions in the ['-Y direction is larger than the minimum value of the
anisotropic superconducting gap A, in this direction (Fig. 2), then the overall sign of the
order parameter along the b axis will be the same as the sign of A, (A, +A7"<0).
However, since the induced gap in the 1D chains along the I'-X direction is A =0, the
sign of the superconducting order parameter along the a axis is the same as the sign of the
gap A, in the 2D layers (A7"">0). Such a change in the sign of the superconducting gap
parameter upon rotation through an angle of 7/2 (from the a axis to the b axis) could
simulate a d-wave pairing”*® in tunneling experiments'?>~'* on YBa,Cu;0,_; single
crystals, giving rise to a phase shift of 7 in the Josephson currents.

The results of recent numerical calculations?® of the superconducting order param-
eter in YBa,Cu30,_ 5 on an anisotropic, multiply connected Fermi surface support the
model of an anisotropic structure of gaps in 2D layers and 1D chains proposed in the
present letter. An anisotropy of the absolute value of the superconducting gap in
BiSrCaCuO (and also TIBaCaCuQ and HgBaCaCuO) could simulate a d-wave pairing in
experiments in which the phase of the order parameter is unimportant (e.g., in Raman
scattering). On the other hand, ““first-principles’ numerical calculations®’ of d-wave pair-
ing due to an exchange of antiferromagnetic magnons lead to extremely low values
T.~1 K, because of a predominant repulsion over the entire volume of the Brillouin
zone.

In conclusion I wish to thank A. L. Kasatkin, V. M. Loktev, and V. 1. Pentegov for
useful discussions, including discussions of the results. This study was carried out as part
of a program supported by Grant UBLOOO of the Soros International Science Foundation.

YWe mean the average values of the gap parameters A( ) and 2,(8) on the corresponding regions of the Fermi
surface.

DA finite density of states within the insulating gap, 3 ,(8), may be due to defects (in particular, domain walls)
in the incommensurate superlattice. 22!

In this case, U determines the probability for one-electron transitions between 1D chains and 2D layers.
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