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Quantum string theory is discussed in an Abelian Higgs model. In the limit of
infinitely thin strings, this theory becomes the effective theory discussed

by Polchinski and Strominger, in which there is no conformal anomaly. The
complete string theory constructed here has no tachyons in the spectrum,

so it actually exists in 4D space—time.© 1995 American Institute of Physics.

1. INTRODUCTION

One of the basic tasks in quantum field theory today is to search for an upper
vacuum state. Along the phenomenological approach, it is customary to use some vacuum
consisting of classical solutions of the instanton type.

In the present letter we are interested in the string vacuum. We consider an Abelian
Higgs model in 4D Euclidean space. Guided by the measure and the quantum anomalies,
we accordingly distinguish from the functional integral a part which corresponds to
topological defects (the string theory will be derived for the case in which the world
surfaces have the topology of a sphere). We are actually doing in the continuum limit
what was done on a lattice for compact QED in Ref. 1 and for an Abelian Higgs model
in Ref. 2. The partition function of the theory for compact fields is factorized into two
partition functions: Z o= ZcomZiop, Where Zcop, is the partition function for noncom-
pact fields, and Z,,, is that for topological defects. In the case of compact electrodynam-
ics, topological defects are monopoles; in the case of an Abelian Higgs model, they are
Abrikosov—Nielsen—Olsen strings. In a lattice regularization there are no divergences. In
the continuum limit the Abelian Higgs model (Ginzburg—Landau theory) can be thought
of as an effective theory for a type II superconductor near its critical point. Accordingly,
we will not discuss the zero-charge problem, and we will in practice be dealing with
theories which actually exist.

In the first papers on strings in an Abelian Higgs model in the continuum limit,>*
their quantum properties were studied in the London limit (the Higgs boson has an
infinite mass). It was shown that in the strong-coupling limit (long, thin strings) they can
be described by a Nambu—Goto action. A more accurate action for strings which follows
from the Abelian Higgs models was derived in Refs. 5 and 6. In Ref. 5, a derivation was
carried out at the classical level in the London limit, not in the limit of a large photon
mass (thin strings). It turned out that a necessary condition for stability of classical string
solutions is that the action contain terms which depend on the external-curvature tensor
raised to a power higher than the second. In Ref. 6, a correction of the Nambu—Goto
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action in an expansion in the string thickness was derived at the level of tree diagrams,
and a string ® term was analyzed. We should also mention Ref. 7, which discusses a
duality transformation for the Abelian Higgs model.

Those papers, however, did not take up quantum effects for the string theory, so they
overlooked such important points as the integration measure and the conformal anomaly
(which arises in the limit of infinitely thin strings, in which the theory becomes confor-
mally invariant).

An effective quantum theory for strings in an Abelian Higgs model was proposed in
Ref. 8. Polchinski and Strominger proposed a conformal theory which gives an adequate
description of infinitely thin strings in an Abelian Higgs model: A term with an arbitrary
coefficient was added to the Nambu—Goto action on the basis of general considerations.
They then found the value of this coefficient which would be required in order to contract
the conformal anomaly in 4D space—time. We show below that a theory of specifically
this type arises in a natural way for infinitely thin strings if we consider the Jacobian in
the replacement of the integration over field variables by an integration over string vari-
ables. In the next order of an expansion in the string thickness, i.e., in the first correction,
we find (as in Refs. 5 and 6) a term, with the opposite sign, for the stiffness for a string.
This term was first discussed in Refs. 9 and 10.

2. FROM AN ABELIAN HIGGS MODEL TO A QUANTUM STRING THEORY
In the functional integral for the 4D Abelian Higgs model,

z= f @A”@q)exp[ - f d*x[BF’ ,+3|D @2+ \(|®]2-D]]%,
D,=d,+iA,, 1)
the measure of the integration over the complex scalar field ® =|®|exp(i6) is

J .= f FRe ®FIm q>...=f [|®|2|®]12... @

In the last integral, the integration is over all functions which are regular everywhere
except on 2D surfaces, since ¢ is not defined where the conditions Im® =Re® =0 hold.
Specifically, these two conditions in 4D lead to closed 2D singularities, which are world
surfaces of the strings. Any closed singularity in §= 6+ 6° can represented in the form>’

O pdn 0 (x,%)= 2'n'eﬂmﬂfzd0',lﬁé(4)[x~i( a)l,

daaﬂ=e“b¢9afao"bx~ﬂd20'= \/Etaﬂdzo'. (3)

Here &*(x,x) is a function of x and a functional of ¥, where x=x(o) are the coordinates
of the 2D singularities, which can be parametrized by the coordinates o,, a=1,2. In
addition, 3, represents all possible positions of singularities (without any loss of gener-
ality, we restrict the discussion to a unit magnetic flux within the string):

L...=2 o (@

sing
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where “sing” specifies the position of one singularity; 34X ,,0p%,, and
t,,=(€q/ \/_ )d4% ,dpX, are tensors of the 1nduced metric and the extemal curvature on
3 have no 1ntemal metric in the theory); t =2; and 4,=d/do,.

For simplicity we consider the London llmit (A —0; the theory for the radial part of
the field ® is trivial)®:

x| BF%,+ =|d,6+A4,

4 =constf DA ﬂ@aexp[ - j ] (5)
where a={|®|?). To proceed systematically would require regularizing this theory, by
(for example) explicitly introducing Pauli—Willars regulators. As it turns out, however,
the following regularization of the d-functions is sufficient for our purposes:

M
8(x—y)= lim rexp{— M2 x—y|%, (6)
M2 )T

where M is a momentum cutoff. This regularization is to be understood for all the
S-functions, in particular, for that in (3).

We now go over to a second-quantization theory with an integration over string
world surfaces. The standard procedure of changing integration variables includes the
substitution of unity in the form [see (3)]

1=J[°(x,5)] f _@iﬂal 3 w031 0 (X,5) — 277€ fzdza\/gtaﬂé“)[x—i(a)]}
@)

into a path integral. Here J[ 6°(x,x)] is the Jacobian of the transformation from field
variables to string variables. Convolving £¢° with the functional -function, we find

f 9...= f DOP6....= const f DODE I (3, T(X)=T[ 6 (x,5)], (8)

where %, is to be understood as also meaning a summation over the topologies of the
world surfaces of the strings.

We now separate collective degrees of freedom from the action in Eq. (5). Here the
action is quadratic in A, . After the gauge is fixed, 3,6=0 (0 is the regular part of
6), an elementary integration over A, yields

= f @iﬂj(f)exp[ - # fz J'Eldza'dZG' g(o)t,,(0)

X ZDF-5)g(o" ), Ma")

where m%?=a/B is the mass of the gauge boson, (A+m2)_@(4)(x) 5(x), and

Zen(X) is a perturbation theory on the string vacuum under consideration. Fixing the
reparametrization of the conformal gauge, we find (see the Appendix) J(% ) for the case
in which % has the topology of a sphere:

Z pen(X), )
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J(X)=const exp[ yrym fdz(f[z(ﬁ log\/_)2+,u,\/_]+———j dzcr\/_(&at#,,)z}
(10)

The string tension coefficient x4, which arises because there is a gradient of the Higgs
field, is derived in the Appendix; R is the average curvature of the string surfaces. In the
limit in which m is larger than the eigenvalues of the second fundamental form of the
external curvature, the action found here becomes the action of Ref. 5. However, the
Jacobian J was not considered in Ref. 5. The action can be written as an expansion in the
quantity 1/mR or, equivalently, in the string thickness. In first order of the expansion in
the thickness, the action is local. If 3, has the topology of a sphere, we can use expression

(10) for J; we then find

S=u Jd%\/_ B’ f d2o\g(3,t,,)% d o(d,log\g)>. (11)

Here we have u' =4maln(M¥m*)—pu, and B’ = B—InMR/7 is the charge of the theory,
renormalized for J(X). We should point out that this theory has no internal metric (g is
an induced metric). This action for a string with a negative stiffness>!? is the same, to an
accuracy within In J, as the action derived in Refs. 5 and 6. The term with the stiffness

implicitly incorporates a nonzero (although small) thickness of the strings.

We now consider the zeroth order of an expansion in the thickness of the strings; this
case corresponds to 8’ =0 (the strong-coupling limit). If we fix the induced metric in Eq.
(11) in such a way that we have

8,%,0p%,=0, a#b, (12)
through a reparametrization, we find a conformal theory with the action
(aaab'fp,ab-’?p.)Z

(9:%,)*

In Ref. 8, the second term in Eq. (13) was added, with an arbitrary coefficient, to a
Nambu—Goto action [the first term in (13)]. This term arises in a natural way as a
correction to the Nambu—Goto action in an expansion in the reciprocal of the length of
the strings. The resulting theory can be quantized in a Hamiltonian formalism.® A con-
formal anomaly arises at the quantum level. If this anomaly is to cancel out when we take

account of the contribution of the reparametrized ghosts in gauge (12) in a 4D space—
time, then the arbitrary coefficient mentioned above must® be the same as in (13).

11
S=u' szo(ﬂax#) —1217_ d*o (13)

We also note that the action in partition function (9) contains terms which depend on
the external-curvature tensor raised to a power greater than 2. This situation is required
for stability of classical string solutions. Consequently, the string theory found [Eq. (9)]
is a theory which actually exists in 4D space—time, and which describes Abrikosov—
Nielsen—Olsen strings in a type-II superconductor.
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3. APPENDIX

In this appendix we present the calculation of the Jacobian J. The definition of this
Jacobian, which follows from (7) and (8), is

(B '= f G5 5100y 6 (2.5) — A0y ()}, (14)

where 3 ,8,;0°(x,%) and 3;,8,,6°(x,y) are given by (3). We use the expansion®
(o1 (n@v1

x =x#(s)+nk(s)9,k (15)

for x, , where x,(s) lies on the surface X, n are two vectors which are orthogonal with
respect to 3, at the point s, and QF are the coordmates along these vectors. We then find

5(s—o)

Nx—i(0)]= SP[Q4]. (16)

We write the functional &-function in (14) in the form
8..}= II sd.4= 11 40} H Sl (17)

Qk+0

where we have made use of the circumstance that expression (16) [and thus the expres-
sion in the functional -function in (14)] is zero in the case Q% # 0. Now regularizing
the functional S-function as in (6), we find

1
.. =const(m2yms ' {v= 3O TT 4.}
at=0

= const exp{— ,uS(Z)}H 84..}, mw=const M’ InMR, (18)
a*=0

where V is the volume of the entire space. The region with (*=0 occupies part of the
space, with a “volume”

S(3)= fdza )T/“,(O')J' d*o’ Vh(a')7,,(0")
2

XH M exp{—M?|o;—a]|?} th(E)
1(2m)2

= fzdzoxfi—z. (19)

Here S(2) is a regularized area of all the string world surfaces from %, in (4) (Ref. 11).
The divergent coefficient of the Nambu—~Goto action found here is the price paid for
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taking the London limit. Actually, we could replace M in (18) by a physical Higgs mass,
as was pointed out in Ref. 5. Substituting expansion (16) for ¥ and y into (3), and then
substituting (3) into the functional &-function in (14), we find the following expression
from (18):

&{..}=constd[ g —h]dt,,— 7,,lexp{ — uS(2)}. (20)
We now substitute unity in the form

ab
1= f Dy 5 g~ aayﬂabyﬂ)_@sza( Ty —ﬁﬂafﬂﬁbf,,) 1)

into (14), and we make the replacement

A €ab . o~ . .
f @haba(hab—aay,u,aby,u.)@Tuva( T;UI_ ﬁ‘%y,uabyv)exp ~/szd2o-\/z
=constf Dh oy D7 ,,£XP —%Ldz'r\/ﬁri,,—/.cfzdzr\/ﬁh“b

X 3,9 uOpY = 1 f Edzrrweabaai wOpYy [ o (22)

Here the fields k,, and 7,, do not have kinetic terms, so they take on their classical
values (see Chap. 9 in Ref. 12 for more details). In the case in which 3, has the topology
of a sphere, we fix the conformal gauge® and integrate over y - The first two terms in
the exponential function in (22) and the reparametrized ghosts make a standard contri-
bution to the form of the Liouville action with the central charge (26— D)=22 (Ref. 12).
The third term leads to a term

In MR
f d?n/h(aar,w)2
3

in the Jacobian. The integration over k,, and 7,,, thus leads to expression (10).

1)c-mailzahmedov@vxitep.itep.ru

DFor arbitrary X, a theory for the radial part —|®| can be factorized,” and all the calculations will be similar to
those carried out in the limit A — o, In the final expression for the partition function, however, a path integral
over |®| remains.

3Whether this expansion is ambiguous was discussed in Refs. 4 and 5.

“Although the calculation method used in this Appendix is the simplest one, it cannot be used to calculate the
Jacobian if some other, nonconformal gauge is fixed. It would be more systematic to find the Jacobian by
following the zero modes of the determinants for gauge fields (the procedure would be completely analogous
to that used to find the instanton measure). In this case one could introduce an internal metric in the theory.
With an internal metric, the theory for infinitely thin strings would be analogous to the theory discussed in
Refs. 13 and 14. The only difference would be that the induced Liouville field would have a central charge of
23 in our case, not the 1 in Refs. 13 and 14.
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