Quasiparticle current of ballistic NcS'S contacts
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An approach developed by Blonder, Tinkham, and Klapwijk* for cal-
culating current—voltage characteristics of NcS contacts is generalized
to the case of a dirty S'S electrode with spatially nonuniform supercon-
ducting properties. The amplitudes for Andreev and normal reflection
of electrons from the constriction are calculated. The relationship be-
tween the quasiparticle current of the contact and the quasiparticle
spectrum in the S'S electrode is studied for arbitrary values of the
parameters of the S’ and S materials and for arbitrary values of the
superconductivity suppression parameter at the S’S interface. © 1995
American Institute of Physics.

Analysis of processes which occur in Josephson tunnel junctions with a high critical
current density' and also certain types of high-T. contacts® shows that their properties
should be close to those of structures consisting of a multiple point contact formed by
ScIcS’S or SS’clcS’S constrictions, In general, it is reasonable to assume that the di-
mensions of these constrictions are much smaller than the electron mean free path in the
electrodes and that the transmission of the barrier at the constriction is not too low. The
latter circumstance gives rise to subharmonic features on the current—voltage character-
istics of the structures. These features are generated by multiple Andreev reflection of the
quasiparticles.

The positions of these features have been calculated® in a model which assumes
thermodynamic equilibrium and spatial uniformity of the superconducting properties of
the electrodes (the OTBK model). The electrodes themselves were assumed to be pure
metals. The calculations made heavy use of the coefficients for normal and Andreev
reflection as calculated in Ref. 4 for an NcS constriction.

A microscopic theory of the current-voltage characteristics of pure NcS and
NcN'’S contacts was derived in Refs. 5 and 6. Those studies essentially demonstrated the
validity of the phenomenological approach of Blonder, Tinkham, and Klapwijk (BTK)
and the OTBK model in calculations of quasiparticle currents."

The properties of ““dirty” NN’S structures have been studied previously only in the
model of Refs. 7-10, in which all nonequilibrium processes are localized in the N’
material of the bridge connecting the massive electrodes. These electrodes are at thermo-
dynamic equilibrium. That model is valid for describing processes in NcS and NcN'S
structures in which the electron mean free path in the constriction (N') is much smaller
than the geometric dimensions of the constriction. '

In the present letter we look at a fundamentally different situation: a ballistic con-
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striction of finite transmission connecting two dirty electrodes. In this case, the nonequi-
librium processes are localized in the constriction. From the physical standpoint, the
approach developed below is a direct generalization of the BTK model. Making use of
the circumstance that the physical processes which occur in the constriction can be
described by both the Bogolyubov—de Gennes equations and by the Green’s-function
formalism, we write the coefficients for direct and Andreev reflection from the constric-
tion in terms of parameters of the quasiparticle energy spectrum in the electrodes. The
spectrum itself will be calculated through the use of Green’s functions. That approach
retains the simplicity and physical clarity of the BTK model, in combination with the use
of the Green’s function method for describing the steady-state proximity effect in the
electrodes.

MODEL OF THE CONTACT

We assume that the geometric dimensions of the constriction in the NcS’S contact
are much smaller than the electron mean free paths in the N (/,) and S’ (/) materials.
We also assume that the conditions of the dirty limit hold for the S’ and S metals. We
impose no restrictions on [, or the transmission of the constriction, D. Since the dimen-
sions of the constriction are small, we can also assume that the probability for backscat-
tering of quasiparticles after passage through the constriction is negligible. We make use
of that circumstance. Also noting that both the order parameter and the normal and
anomalous Green’s functions, averaged over the Fermi surface [(G(x)) and {F (x)),
respectively], in the Gor’kov!® equations are independent of the spatial coordinates in the
S’ region near the constriction, we write the solution of those equations in region $'in the
form of plane waves:

Gx,x' x)\ .+ x .-
(F:((x,x’;) =c(x’)(§((x)))e"12"+d(x')(gx;)e"qz". (1)

For definiteness, we have selected the propagation of the incident wave to be di-
rected out of the N metal into the composite S’S electrode. Here g(x) and f(x) are
semiclassical Green’s functions, independent of x in the constriction, which determine the
amplitudes of the electron- and hole-like excitations, respectively. A relationship between
these functions and an expression for the wave vector in (1),

Cf®) WFx)) L \/2 ( G FLY
=) 1+{(GAx)) > 2T N =M p=t 27 ’

follow directly from the system of nonlinear equations for g(x) and f(x) which are found
by substituting (1) into the Gor’kov equations.

@

At the same time, we can use the Bogolyubov—de Gennes equations in the constric-
tion, and we can seek a solution of these equations in the form of incident waves W,
(e.g., incident from N on S’S), reflected waves ¥ 4, and transmitted waves ¥ . (into
the S’S electrode). In particular, we have

. v . +
Vo=e| tertral e, 3= Emaza), )
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where m, and e are the effective mass and energy of the quasiparticle, and « and v are
the amplitudes of the electron- and hole-like excitations, respectively. Proceeding as in
the BTK model, we easily find the following expressions for the coefficients of Andreev
reflection, A(€), and normal reflection, B(¢€):

|l PO 4018 el /O S
[ z2a-p7r 2O Tra-par s T

The so-called Z-factor in (4), which was introduced in Ref. 4, is determined by the
transmission coefficient of the constriction: D~ '=1+Z2. Now noting that the energy-
dependent terms in the expression for the wave vector in (2) and (3) are small in com-
parison with the chemical potential & in the contact region, we easily see that solutions
(1) and (3) have the same structure, and the parameters 7 introduced in (2) and (4) have
the same meaning and are identical. Substituting the expression for 7 from (2) into (4),
and using the normalization condition (G .)?+ (F )*=1, we find the relationships which
we need between (on the one hand) the coefficients A (€) and B(€) and (on the other) the
semiclassical Green’s functions (G (0+)) and (F (0+)), which characterize the local
energy spectrum of the S’S electrode in the constriction region:

[(F (0+))2 _ a7+ 7Y
[1+2Z24+(G(0+))]*’ B(E)‘|1+2z2+(cf(o+))|2‘

A(e)= 4)

)

A(e)=
In the spatially uniform case we have (G (0+))=—ie/\JAj—€*, and
(FO+))=Ay/ \/Aoi— €, and the BTK result* follows from (5).

Equations (5) are the basic result of the present letter. They constitute a natural
generalization of the result of the BTK model to the spatially nonuniform superconduct-
ing state of the S'S electrode. As in Ref. 4, they make it possible to calculate the current
through the NcS’S constriction:

Ry' [+=
V)= 157 f_w[fo(f+eV)—fo(6)][l+A(6)—B(e)]de, (6)

R0=[2N1(O)S€2UF1]—‘1.

Here fy(€) is a Fermi distribution, S is the area of the contact, and N,(0) and v, are the
density of states and the Fermi velocity of the electrons in the N metal. Correspondingly,
using (5), we can generalize the results of the OTBK model® to calculate the quasiparticle
current of ballistic SS'cS’S contacts. Expression (6) is written for the 1D model of a
contact. In general it should be averaged over angles, and the angular dependence of the
constriction transmission coefficient D should be taken into account.

The problem is thus reduced to one of solving a steady-state problem, that of cal-
culating the Usadel functions (G .(0+)) and (F(0+)) at the free boundary of an S’S
sandwich.

PROXIMITY EFFECT IN A “DIRTY” §'S SANDWICH

To solve this problem, it is convenient to use the functions 6(e€,x) which are related
to the Usadel functions by the equations (G (x)) =cosé (¢, x), {F .(x)) =sin8 (¢, x). These
functions are the solutions of the boundary-value problem'*~16
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FIG. 1. Density of states in the N’ region of an N’S sandwich at the free surface of the N’ metal (solid curves)
and at the N’S interface (dashed curves), normalized to the density of states in the N metal in the normal state.
Curves 1-4) d/¢,,= 10,2, 1, and 0.5, respectively. The suppression parameters are y=0.05 and y;=1.
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FIG. 2. Density of states in the N’ region of an N’S sandwich at the free surface of the N’ metal (solid curves)
and at the N’S interface (dashed curves), normalized to the density of states of the N metal in the normal state.
Curves 1-4) d/£,,=10,2, 1, and 0.5, respectively. The suppression parameters are y=1 and yz=1.
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0. (—d)=0, 6)=arctan(ido(T)/€). 9)

Here &, ; py s, and T, . are the coherence lengths, resistivities, and transition tempera-
tures of the S* and S materials, respectively; Ry is the resistivity of the S’S interface; d
is the thickness of the S’ layer; w are the Matsubara frequencies; and A(T) is the
equilibrium value of the modulus of the order parameter in the interior of the S electrode.
The prime means differentiation with respect to the coordinate x, which is reckoned from
the plane of the constriction in the direction perpendicular to the S’S interface. In the
calculations below we consider only the case T.»=0. (There is no serious problem in
generalizing the results to the case of nonzero temperatures of the S’ material;'®7 a
corresponding study will be carried out in the future.)

Boundary-value problem (7)—(9) has been solved by numerical methods for arbi-
trary thicknesses of the S’ layer and for arbitrary values of the suppression parameters
v and yg . Figures 1 and 2 show the results of calculations of the density of states at the
S’S interface (dashed curves) and at the free boundary of the S’ material (solid curves)
under the condition T<T.. Significantly, at all values of d there is nonzero energy gap
A, in the S’ region. This gap is induced by a proximity effect. As a result, at small values
of y and under the condition d<¢§,,, there are two structural features in the density of
states at the free boundary, with energies € which are equal to the equilibrium value of
the order parameter in the S electrode, e=A(T<T.)=A,, and the effective gap in the
S’ material, e=A, . The first of these is suppressed with increasing d or . The second,
in contrast, becomes sharper with increasing d. The conclusion that there is a nonzero
energy gap A, in a normal metal with T,,=0 in an NS system has previously been
reached only in the limit d< £, (in the McMillan model,'® for a low transmission of the
NS interface, and in Ref. 17 for an arbitrary transmission).

The two features in the density of states give rise to corresponding peaks on the

A(€), B(€)

€/a,

FIG. 3. Coefficients of Andreev reflection, A(€) (solid curves), and of normal reflection, B(€) (dashed curves),
of a baliistic NcN’S constriction (yy= yd/£,,=0.1, ygy=ypd/ €, =1) for various values of the factor Z
(Z=0,0.5, 1, and 2).
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FIG. 4. Conductance of a ballistic NcN'S constriction (yy= yd/f;",=0.1, yem= vgd/ & =1) for various
values of the factor Z (2=0, 0.5, 1, and 2) at a temperature T<T,.

plots of A(g), B(g), and the differential conductance of an NcS'S contact with a thin
S’ layer (d<€¢,/; Figs. 3 and 4). At Z=0 and at low voltages, the conductance is doubled
by Andreev reflection, as in the case of the BTK model. In dirty constrictions, this
doubling does not occur.''2 With increasing Z, the conductance at a zero bias voltage
decreases and depends on Z only. In accordance with the discussion above, the structural
feature at large energies or voltages is easily smoothed over by any para-destroying
mechanism (e.g., an increase in y or d). The position of the first peak, in contrast, is
stable. It might be utilized to study the proximity effect in an S'S sandwich for arbitrary
combinations of the materials making up the sandwich.
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