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The phase structure of the Gross—Neveu model is analyzed in a space
with a topology R'X S! and a chemical potential w. In the (u,1/L)
parameter plane, where L is the length of the S' circle, there exists a
tricritical point, at which the boundaries of three different phases
meet. © 1995 American Institute of Physics.

We are still far from a unified theory of all forces in nature, including gravitational.
This is the motivation for the substantial efforts of physicists to derive quantum field
theories in spaces with nontrivial metrics and nontrivial topologies.! The relationship
between spontaneous symmetry breaking and the curvature of the space, and also the
topology of the space, has already been discussed along this approach.” In this letter we
consider the joint effects of such factors as a nonzero number density of particles and a
nontrivial topology of the space—time on the structure of the vacuum in quantum field
theory.

We start from the 2D Gross-Neveu model,”> whose Langrangian can be written

L=§ (hid+ o] —-Na¥(2g), (1)

where c/A/k is a two-component Dirac spinor for each fixed value k= 1,...,N.[In the equa-
tions of motion we have o=y, and Eq. (1) is equivalent to the well-known
Lagrangian with a four-fermion interaction.’] Lagrangian (1) is symmetric under the
discrete chiral transformation o— — &, ¥,— vy >, . An attractive feature of this model is
that many of its properties (asymptotic freedom, spontaneous breaking of chiral invari-
ance, etc.) are reminiscent of quantum chromodynamics. This model can also be used to
describe quasi-1D conducting compounds which have come to be known as ‘‘Peierls
insulators.”* This field theory was recently studied in a 2D space—time with the topology
R'X S! (the spatial coordinate axis has been compactified here, and the S circle has a
length L). In contrast with Ref. 5, we consider the phase structure of the Gross—Neveu
model on the space R'X S! as a function of two external parameters: the length of the
circle, L, and the chemical potential p==0.

We begin by recalling that the effective potential of the model with w, A=0
(A=1/L) takes the following form in the leading order of a 1/L expansion:*%
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No? Ng?
Volo)= P +—; d*pin(o? p)=——[2ln((r/M)—1] 2)

In (2) and below we assume o=0. In addition, expression(2) reflects another property of
the Gross—Neveu model: dimensional transmutation. In place of the dimensionless cou-
pling constant g, the independent parameter of the model is the dimensional quantity M,
whose physical meaning is the mass of the fermions.

With & # 0 and A =0, the effective potential is’

V,(0)= vm——f PN YOI o YO oY @3

where @(x)=1 at x=0 and ©(x)=0 at x<0. Finally, with A # 0 and £=0, and in the
case in which the fields satisfy periodic boundary conditions, i.e., i {(x+L)=in(x),
ag(x+L)=0o(x), the effective potential is®

N )
Vi(o)=Vo(o)— Ej_wdpoln [l—exp(—L\/o'2+p07)]. 4

In the present letter we restrict the analysis to periodic boundary conditions on the fields,
although it is possible to study the Gross—~Neveu model under antiperiodic conditions and
also under conditions of a more general type.’ The absolute minimum of the function (4)
is at the point o5(\), which in the limit A —0 is 0((0)=M, while in the limit A — it
is

oo(N)~aN/In(N/Ny), &)
where 47A¢=Mexp(y), and y=0.577... is Euler’s constant.

We assume u, N # 0, and we assume that the fields ¢ and ¢ satisfy periodic
boundary conditions. In order to find the effective potential in the leading order of a 1/N
expansion in this case, all we need to do is replace the integration over the variable p; in
Egs. (2) and (3) by a summation over the discrete values p,,=2w7\n
(n=0,£1,%2,..). As a result, we find

VﬂL(cr)=VL(0')—N)\~2_ O(u— Vo +(2mnN)2)(u—Jor+(2man)d).  (6)

We now restrict the discussion to value g and X\, for which (u,\) € Q, where
Q={(u,\):0sus2mA}. ¢

In this case, only V; (o) and the term of the sum corresponding to n=0 contribute to
expression (6). The steady-state equation for function (6) is, by analogy with Ref, 5,

dV/LL(O-) A No oY

“do ——0——-—7‘_— ln()\/)\o)+1(0')——O_—[G)(M_U)_l] , ®
where

I(o)= 21 {I/n—[n2+(0/27,.)\)2]—1/2}. o
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FIG. 1.

We thus see that under the condition A >\ the function in (6) has two stationary points:
0,=0 and g,=0y(\), where oy(\) is the point of the absolute minimum of function (4)
[see (5)]. We consider the equation

V}LL(O):V[LL(OO()\))’ (10)

which specifies a critical curve = @ ;(N). Clearly, at > (N) and N>\ there are
points corresponding to a massless, chirally invariant phase A. Here oy =0 is the abso-
lute minimum of the potential V ,; (o). If w<<gt{(A) and N>\, the absolute minimum
of the potential is at o,= gy(\). Corresponding to these points in the region (1 is
massive phase B, in which the chiral invariance of the original model is spontaneously
broken (Fig. 1). Since the order parameter [i.e., the position of the absolute minimum of
the function V,;(0)] changes in value abruptly at the intersection of the curve
m=m1(N\), this is a curve which represents first-order phase transitions. From (6)—(10)
we find

wi(N)=[VL(0) =V, (og(N)) ]/ (NN). (1)
It is thus a straightforward matter to show that in the limit A\ —% we have
(y+1)mx

pi(N)=(y+1)ao(N)/2~ (12)

2In(NNg)

Furthermore, numerical calculations yield wp;(Ag)=~(0.32...)27A,; i.e., the curve
1 (N) intersects the line A =X, at a point « (Fig. 1) which belongs to region ().

We now assume A <A . In this case, steady-state equation (8) has one more solution
in addition to @ ,: a3=0y(N). In the limit \— X\, this other solution can be written

Go(N)=~[8(Ng—NNom/ L(3)]", (13)

where {(3)=1.202... . At the point o, =0, the potential obviously has a local maximum.
Consequently, the absolute minimum of this potential is at either the point go(\) or
ao(A), depending on whether we are above or below the curve
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(M) =[V(ao(X)) =V (ao(N))J(NN). (14)

In the limit A\— )\, the curve of u,(\) touches the point a, at which we have
s N)=pi(No)— ao(N). (15)

When the curve u,(A) is crossed, the coordinate of the absolute minimum of the poten-
tial changes in value abruptly. Accordingly, a first-order phase transition occurs from the
massive phase B to the massive phase C of the theory. All the points in the €} region
which lie above u,(\) and to the left of the straight line A =X\, correspond to this new
phase (Fig. 1). We shouid also point out that on the line A =\, above point « there is a
second-order phase transition from phase C to phase A. Here y(A) vanishes; i.e., the
order parameter is continuous at the phase boundary.

In summary, we have shown that in the leading order of a 1/N expansion in the
Gross—Neveu model in the space R X S' with a chemical potential there exists a tricriti-
cal point a, at which three phases touch each other: two massive phases and one massless
phase (Fig. 1). Three critical curves emerge from point @. Two of them are curves of
first-order phase transitions. When these curves are intersected, there are abrupt changes
in not only the masses of the fermions, but also the energy density of the ground state.
The third curve represents second-order phase transitions.
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