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The orbital angular momentum of the axisymmetric textures and vorti-
ces in Fermi superfluids and superconductors is discussed using the
example of *He-A. If there are no zeros in the quasiparticle spectrum,
the orbital momentum of the texture is robust, i.e, it is not sensitive to
the change of the texture provided that the axial symmetry is not vio-
lated. If zeros exist or there is an anomalous branch of the low-energy
fermions in the vortex core, the orbital angular momentum will depend
on the texture. This dependence comes from the accumulation of the
fermionic topological charge induced by the texture. The change of the
orbital angular momentum in the texture occurs as a result of spectral
flow through the nodes or along the anomalous branch. © 1995 Ameri-
can Institute of Physics.

1. INTRODUCTION. AXIAL SYMMETRY CHARGE

Let us consider the static orbital angular momentum of the axisymmetric distribution
of the order parameter in the Fermi superfluids and superconductors. We apply the gen-
eral approach of the spectral flow, which is valid for the quantized vortices in conven-
tional superconductors and 3He-B, where the vortices have singular cores, and for the
continuous order parameter texture which can exist in *He-A. The general result, when
applied to the *He-A texture, allows us to treat the angular momentum paradox in *He-A.

The paradox of the orbital angular momentum in the Fermi pair-correlated states has
a long history, which began in 1961 when Anderson and Morel' introduced the anisotro-
pic state which later was found to be the A-phase of superfluid *He. Each Cooper pair in
this state has an orbital angular momentum #l, where 1 is the unit vector of the orbital
anisotropy. Estimates of the total angular momentum of the system vary from (N/2)%l,
which corresponds to the momentum #/2 per N particles of the system (see Ref. 2), to a
much smaller quantity ~N(Ay/Er)*Al (see a recent paper’; here A, is the gap amplitude
which is much smaller than the Fermi energy E ). The latter estimate corresponds to the
space integral of the intrinsic dynamic momentum found by Cross,* which is related to
the inertia of the 1 precession.

We show here that this paradox is closely related to the axial anomaly which appears
either due to zeros in the quasiparticle spectrum®™’ or due to quantized vortices.® In each
case the spectral flow through the gap nodes or along the anomalous branch of fermions
within the vortex core leads to the accumulation of the orbital angular momentum. The
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latter plays the part of the topological charge induced in the Fermi sea by the texture of
the order parameter (the fermionic topological charge formalism in superfluid *He is
discussed in Ref. 6).

The relevant fermionic charge in the axisymmetric system is related to the residual
symmetry of the system. This is the generalized angular momentum, expressed in terms
of the angular momentum and the particle number operators (see, e.g., reviewg):

Q=L,—(n/2)N. (1.1)

Here n is an integer: n=1 for the homogeneous A-phase with 1=2, where the rotational
symmetry SO(3), is spontanecusly broken together with the gauge symmetry U(1) »,
but the combined symmetry with the generator Q=L,—(1/2)N is conserved. This means
that the action of Q on the (multicomponent) order parameter ¥ annihilates the order
parameter: Q¥'=0; i.e., the A-phase order parameter does not change if the rotation is
accompanied by the proper gauge transformation which is generated by N and which
leads to the change of the order-parameter phase.

Equation (1.1) can be also applied to the inhomogeneous vacuum,” e.g., to the
quantized vortices in the conventional s-wave, pair-correlated state: In this case n is the
winding number of the vortex. In the inhomogeneous case the generator L, contains two
terms: LZ=L'Zmemal + L‘;’“emal, where L™ js the generator of the orbital rotations in
the order parameter space [in the isotropic SO(3), group], while L™*™=;rxX 4, is the
generator of the coordinate r rotations. The axisymmetric or Q-symmetric state means
that QW¥(r)=0.

This symmetry of the vacuum tells us that Q is the conserved, integer (or half-odd-
integer) quantum number, but this fact does not mean that the Q charge of the vacuum
should be exactly zero. In the pure fermionic description (Sec. 4) the total charge of the
vacuum is

(vaclQlvac)= 2 Q8(~Eq,p,.,). (1.2)
PysS

where Ep,p. s are the energy eigenvalues of the fermions in the axisymmetric field of the
order parameter (in addition to the quantum number Q, there are the other quantum
numbers: the linear momentum p_ along the symmetry axis z, the radial quantum number
s, efc.); 9(_EQ,pZ s) 1s the step function of the energy, which shows that only the
negative energy states contribute to the vacuum charge. The charge of the vacuum can be
nonzero if some discrete symmetry is broken and Ep , .« # E_p +p -

One can find the condition when this charge is zero, which for the A-phase state
means that the total angular momentum L,=(vac|L |vac)=(n/2)N, in accordance with
Ref. 2. This condition is related to the adiabatic process, which means that during the
process there is no level flow from or into the vacuum state, and thus the fermionic
charge is conserved in this process. This process takes place, for example, if there is a gap
in the fermionic spectrum. For the A-phase state it occurs in the limiting case of the Bose
condensate of the isolated Cooper molecules each with a momentum # (or in a thin film
in which the gap nodes disappear due to the transverse quantization; see Chap. 9 in Ref.
7. Let us start from the Bose condensate as the initial state which has Q=0 (and thus
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L,=N/2), and transform this state adiabatically into the real He-A, without violation of
the axisymmetry: In the final *He-A state we will then also have Q=0. The problem,
however, is that during this continuous transformation the gap nodes appear at a certain
time and the process can lose the adiabaticity, since the spectral flow through the nodes
can emerge in the bulk liquid or at the boundary of the system.

Let us now determine how the spectral flow leads to a nonzero @ in the vacuum
state of the axisymmetric texture in the arbitrary pair-correlated system and apply the
result to the continuous vortex in the A-phase. This is a simple quantized vortex, in which
the microscopic calculations (Sec. 4) can be completed and compared to the phenomeno-
logical hydrodynamic approach (Sec. 3). But let us first recall how the spectral flow
modifies the linear momentum in the A-phase.

2. LINEAR MOMENTUM ANOMALY IN 3He-A

Let us start from the Bose condensate of the isolated Cooper molecules with the
symmetry of the A-phase or from the A-phase state with a negative chemical potential
1<<0, whose fermionic spectrum E = \f(p2/2m3— W)+ c?(1X p)? has no nodes. One can
adiabatically transform these two states into each other and therefore they have identical
properties. The mass current (or the density of the linear momentum) in these node-free
superfluids at =0 is

fi 1
Jnode-free = Ern; pvs+ 5 V X Lyode-free - (2.1)

The first term is dictated by the Galilean invariance. Here v, is the superfluid velocity in
units of 7#/2my. The vector L is the density of the angular momentum, which for the
node-free states is

fi

Liode-free= 2—r;t-3_ pL 2.2)

Let us now continuously transform the node-free liquid into the real A-phase by
changing the chemical potential from negative to positive. At x>0 the gap nodes appear
at two points p=*p.l, where p%/2m;=u. Near each node the fermions can be de-
scribed as chiral Weyl fermions moving in an “electromagnetic” field A= prl produced
by the I texture.” If [9,A-(VXA)]#0 there is an effect of axial anomaly:'® The spectral
flow of fermions leads to a creation of quasiparticles from the vacuum. In *He-A each
created quasiparticle carries the linear momentum p L. This results in the production of
the net quasiparticle linear momentum:

1
‘u)tm:ﬁf d&r ppl [3,A-(VXA)]. (2.3)

Since the total linear momentum is conserved, the momentum is transferred from the
collective variables of the order parameter to a system of quasiparticles.

We take an arbitrary but fixed I(r) texture in the node-free state and consider the
transformation into the real A-phase in such a way that only u changes with time. At
some instant t=1¢, the Fermi momentum appears. This momentum then changes from
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pr=0 at t=1, to the equilibrium value p () in the real A-phase at r=2 . In this process
3,A=19,pp and the total momentum of the texture, compared with Eq. (2.1), changes as
follows:

0 1 00
P()—P(ty) = —f dt 0P, = — 2——2-J dtf d’r p%c?,pFl [1-(VX1)]
fo T Jig

1 3 _
——EJ’ d’r Col [1-(VXD], Co—m pr(®), (2.9

where P(t0)=[d’r juode tree iS the anomaly-free momentum in Eq. (2.1). The extra mass
current in the A-phase,

1
Janomatous = —5 Colf1- (VXD)], (2.5)

results from the helicity of the A field (concerning the role of helicity in particle physics,
see Ref. 11).

3. ANGULAR MOMENTUM OF THE ®He-A TEXTURE: A PHENOMENOLOGI-
CAL APPROACH

Let us estimate the Q-charge of the vacuum in the A-phase for different continuous
axisymmetric l-textures, which can be obtained by continuous deformation of the homo-
geneous vacuum with 1=,

The general solution of the axisymmetry equation QI(r)=0 for the 1 texture is

1=2 cos 5(r)+sin 5(r)[F cos a(r)+ ¢ sin a(r)]. 3.1)
We set 7(0)=0 to have I{r=0)=7Z at the center of the vessel. This is required by the
continuity of the deformation of the homogeneous state with 1=2.

If 7{r=ry)=a, the texture represents the continuous Anderson—Toulouse~
Chechetkin 47 vortex in *He-A (Ref. 12) with

1

Ly

1 1
r>r0dr-vs=5;r—f dS-V><vx=ﬁf dx dy 1-(3JIx3,)=2, (3.2)

and with the core radius ry. Here we used the Mermin—Ho relation'?
VXv:=%e,~jkl,~Vlj><Vlk (33)

and the expression for the topological invariant which describes the mapping $2—S? of
the vortex cross section to the sphere S? of the unit vector I-1=1. The invariant shows
that within the continuous 44r vortex the whole area 4 of the sphere is swept once. For
simplicity we consider the coordinate to be independent of «.

In the phenomenological description the orbital angular momentum is given by the
momentum of the current: L=fd’r rxj. The integration of the regular terms, [Eq. (2.1)]
after integration by part and after using the boundary condition p(R)=0 (there are no
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particles outside the vessel of radius R), gives the standard contribution to the angular
momentum: L z(regular)=%N . Thus the charge @ of the axisymmetric vacuum is given by
the orbital momentum of the anomalous current:

1
<VaC|leac>=f d3r ZA'(eranomalous):_EJ darCO [2‘(1')(')] [l'(VXl)]

sin 7 cos 77)
_, (3.4)

o
= —wa dr r’Cy sin® a sin 77( d,p+
0

(here L is the length of the vortex). This means that if the 1 texture contains a helix (i.e.,
if sin a#0), the total momentum of the vortex texture in the A-phase will be reduced
compared with (1/2)N which was calculated for the node-free models.

In the following section this phenomenological expression is rederived from the
general expression obtained by using the spectral flow along the anomalous branch of the
fermions localized in the vortex core.

4. ORBITAL ANGULAR MOMENTUM FROM FERMION ZERO MODES ON
VORTICES

In particle physics the fermion zero modes on strings are the p, modes, i.e., they
correspond to the branches of the spectrum of fermions localized in strings, EQ’PZ’S’

which cross zero energy as a function of the continuous parameter p, . For the condensed

matter strings, vortices in the pair-correlated systems, the important zero modes are Q

modes,'* the branches of spectrum Eg , ,-o, Which cross zero energy as a function of
Py

the parameter Q. In most cases the charge Q can be considered as continuous. The Q
zero modes in the condensed matter have the property of the p, modes in particle physics:
the algebraic sum of zero modes is nonzero and is defined by the winding number n of
the vortex.® This means that the number v of the negative fermionic levels with a given
p. is different for large positive and large negative Q:

v(p,,0=+o)—v(p,,Q=—°)=2n, (4.1)
and the branch EQ,pZ,FO crosses zero at some Q=Q0y(p,).

In the most symmetric vortices Q4(p,)=0, i.e., the energy spectrum of the fermions
on the anomalous branch, E 0.p,.s=0 = Qu(p,), crosses zero at 0 =0. However, if some
Py

discrete symmetry is broken in the vortex core, then we have Q,(p,)#0. Such a situation
was found in the continuous vortices in the A-phase if the helicity of vector 1 is nonzero.'
According to Kopnin,'>!®

Qo(p)=r(p,) sin @ \pi—p?Z, (4.2)

where r(p,) is the radius at which

cos p(r)= Eﬁ, (4.3)
Pr

and the lowest energy levels with the radial quantum number s=0 are given by
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A0
pr r(p,) cos a

E(Q,pZ,S:O): [Q—QO(pz)] (44)
Although Q is discrete, the distance between the Q levels Ay/(pp r(p)cos @) is very
small compared with the gap amplitude Ay. This means that the effective Q is large and
that it can be considered to be continuous.

Since Qy(p,) depends on sin a during the evolution of the vortex structure, the Q
levels cross the zero energy, which leads to an accumulation of the charge Q in the
vacuum. This situation was phenomenologically discussed in Sec. 3. In terms of the
fermionic levels, the rate of the charge Q production,

a,(VaClQ'VaC>=QEP QaIV(Q’pz)’ (4'5)

can be found from the following consideration. If Qy(p,) changed due to the modification
of the vortex, e.g., due to the change of «, the rate of the flow of the Q levels through
zero will be 9,Q4(p,). Since at each event the charge Qq(p,) is transferred from the
vacuum to the fermionic degrees of freedom, the total rate of the charge transfer is

d(vac|Q|vac)= pE 0P )9, Q0(p.)- (4.6)

Thus if we start from the most symmetric vortex and continuously transfer this state into
the vortex with a broken symmetry, we obtain the following general result for the charge
Q of the vortex:

1
(vac[vaac)=5§ Qa(p,). (4.7)

Now we can apply this general result to the A-phase vortex. Using Eq. (4.2), we
obtain the Q charge of the helical texture

4

(vac|Q|vac)=sin* Lf (Z-r r*(p,) (p}—pf). (4.8)

We can show that this is in fact Eq. (3.4). According to Eq. (4.2), the function r(p,) is the
inverse function of pr)=pg(r)cos 7{r). Adding to Eq. (4.7) the factor
l=fgdr6[r—r(pz)] (where R is the radius of the vessel), we obtain

d dp, (R
| & rwawi-ph= [ [Carotr—rpa) rod Gh-pd

I (R .
= EJ'O dr r’pi(r) sin® 5 3,(pp cos 1)
3

i R
= ﬁJ'o dr
Pr

+r? sin? 7 cos 74, 5

ripi(r)sin® 5 4, cos 7y

. (4.9)
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The second term is integrated by parts using the condition p =0 outside the vessel, and
we have

dp 1 o i sin 7+ cos 7
—r¥p,) (pi—ph)=— Fpe Jo dr r*p3 sin g (&,7;+ _—,

2 ’
(4.10)
which corresponds to Eq. (3.4).

5. CONCLUSION

The orbital angular momentum of the axisymmetric vacuum in the pair-correlated
fermionic system is L, =(n/2)N+Q, where N is the number of particles, n is an integer,
and Q is the conserved fermionic charge in the axisymmetric vacuum. In the presence of
the gap nodes the charge Q, given by Eq. (4.7), depends on the texture. The gap nodes,
which give rise to Q#0, can exist (i) in the bulk liquid (like in the A-phase), (ii) within
the core of vortices, and (iii) on the surface of the container (the effect of the surface will
be discussed later). When the texture changes, the charge Q is accumulated by the flow
of the Q levels through zeros. This occurs only if a discrete symmetry is violated in the
texture; in *He-A the effect exists only in the presence of the helical structure, with
1- (VXD =0.
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