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It is shown that the early stage of the evolution of the universe with
n<10 is characterized by the fact that the volume of an arbitrary space-
like hypersurface with dimension m<{n—2 is compressed. It is shown
that this behavior does not depend on the choice of the initial quantum
state and can provide a mechanism for reducing the additional spatial
dimensions. © 1995 American Institute of Physics.

We know that different unification theories' predict the existence of additional spa-
tial dimensions. It is assumed that at present, the size of the universe in the additional
dimensions is of the order of Planck’s length and the extra dimensions themselves are
manifested in the form of ordinary matter, as a collection of scalar and vector fields. This
picture, however, is no longer valid at the earliest times of the development of the
universe (near the cosmological singularity), and it should be expected that during this
period all dimensions play an equal role. This makes it possible to use different multidi-
mensional theories of gravitation to describe the early universe and, at the same time, it
raises the question of the mechanism of compactification of the additional dimensions.?

As one such mechanism it is possible to make use of the fact that near a singularity
the local behavior of a nonuniform gravitational field is strongly anisotropic.™> At the
same time, an element of the spatial volume expands in certain directions and is com-
pressed in other directions (Kasner regime). This behavior could be interpreted as dy-
namical reduction of the number of dimensions, except for one fact. First, for n<<10
(n is the number of spatial dimensions) the Kasner regime is unstable — such regimes
alternate — and, second, for 7 =10 the number of directions in which compression
occurs is found to depend on the position in space. In this sense, the dimension of the
space should depend on our location in the universe.

In the present paper we study the quantum behavior of nonuniform multidimen-
sional models near a singularity and we show that, at least for n<< 10, the dimension 3 is
identifiable in the sense that in the process of cosmological expansion the space is com-
pressed along arbitrary hypersurfaces m<<n—2.

As indicated in Ref. 5 , the behavior of a nonuniform gravitational field near a
singularity can be described on the basis of an asymptotic model. The
(n+ 1)-dimensional interval for such a model is represented in the Kasner form

n—1

ds?= - N2dr*+ 20 e?"(14)?, (1)
e
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where [°=1[% dx® are Kasner vectors which contain only n(n— 1) arbitrary functions of
the spatial coordinates. The dynamics of the gravitational field is determined in leading
order by the behavior of only the scale functions ¢°, while the vectors 7% play a passive
role. The evolution of the scale functions is described by the action’

zzfs{paaai:—x[E p*- (EP

where \ is expressed in terms of the lapse function A =N/ \/E . The potential in Eq. (2)
can be represented in the form U= —gR"=3\ g4, where the coefficients \ 4 are func-
tions of all dynamical variables and their derivatives, and the exponents o4 are given by
the expressions o, =1+ Q,~Q,— Q. (b # ¢), where Q,=¢*% Sq are the anisotropy
parameters. The asymptotic behavior of the potential U in the limit g =exp(2g)— 0 is
modeled by potential walls,>®

2
+U

1
d"xdt, (2)
n—1
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This potential is found to be independent of the Kasner vectors.

The configuration space M of the system (2) (superspace) is represented as a direct
product M =11, M, . Since we are interested in the behavior of the local characteristics
of the space at a single point x € S, it is sufficient to study only one term M, in this
product. This limitation is possible on account of the fact that because of the large-scale
nature of the gravitational field, in the asymptotic limit g— 0 the dynamics of the M,
degrees of freedom do not depend on the other terms in the direct product.’

The space M, is an ordinary n-dimensional pseudo-Euclidean space. In the har-
monic variables the part of the action (2) that refers to M, assumes a form that is
formally identical to the action for a relativistic particle [for simplicity we set
(Ax)"=1]:

4z°
1=”Pa o —x'(P?+U—P3)]dt, (3)

where )y’ =Nn(n—1), and the variables z¢ are determined by the relation
q“:Aj-'z’+z° (j=1,..., n—1) with a constant matrix (see Ref. 5)

Ao n(n—1) P ish  gie L, j>a,
i j(j+1)(f %), 9= 0, j<a.

As shown in Ref. 7 , quantization of such a system is performed just as for relativ-
istic particles.® The existence of a Hamiltonian coupling leads to the Wheeler—de Witt
equation’

(—A+U+EP)Y =0, 4

where V¥ is the wave function describing the quantum states of the degrees of freedom
M,,
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G 4p 18 a metric given by the interval

ﬂA \/ - GGABGB .

A=

1 .
51‘2=;4-X7(<6z‘)2—(5z°)2),

and P is the scalar of the curvature on M, . The value of the constant £ must be chosen
as £=(n—2)/4(n—1), which renders Eq. (4) conformally invariant, which reflects that
the lapse function A was chosen arbitrarily.

Using the Misner—Chitra variables®’ (see also Ref. 10) (y=y")

0 ‘T1+y2 ~T y
z’=—¢€ _ITyT’ z=—2¢ Tj;z’ y=|yl€l, (5)

we can represent the metric on M in the form

e—”( 4(8y')?

2 =
==y

—(57)2)- (6)

In these variables the anisotropy parameters Q, and therefore the potential U(Q) do not
depend on the time variable 7:

| 2A]”.yj
=—1{1+
Q.(y) E 5,7

For simplicity, we employ below the gauge 4\'e?" =1,

The space-like part of the configuration space M, is a (rn—1)-dimensional Lo-
bachevskil space, and the potential U limits its part X (Ref. 5)

Oue=11t0,—0,—0.=0, a#b#*c. 7

Then the complete orthonormal set {u,, ,u} of solutions of Eq. (4) will then consist of
functions of the form

1
uy= exp(—ik; )@ (), (8)
J \/ﬁ; P JT)Py
where ¢, are the eigenfunctions of the Laplace—Beltrami operator
,, (n=2)°
Ay+k/+'_4"— ¢,(2)=0, @) x=0, 9

and the operator A, is constructed using the metric dI*=h;; dy'dy/=4(dy)*/
(1-y?)2. In the case n< 10 the region K has a finite volume and J assumes only discrete
values (J=0,1,2...). For n=10 the volume of the region K is infinite and the spectrum
is continuous.
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The probabilistic interpretation is introduced by separating the positive-frequency
spectrum H ™ in the space H of the solutions of Eq. (4) (see Refs. 7 and 8 ). Therefore,
an arbitrary wave function ¥, which describes the physical state of the gravitational field
at the point x, can be represented in the form

\1'22 Ay, (PI¥Y=2 |A2=1, (10)

where A, are arbitrary constants, determined so as to satisfy the initial conditions. We
note that the states (8) play the role of stationary states of the gravitational field, but the
geometry corresponding to these states is nonstationary (since the metric contains the
time variable 7 explicitly).” The probability that the scale functions are localized at the
point O=(y',7) € M, is given by the expression P(y, T)—l((l)(y 7)|¥)|?, where
by, =3, \/— u¥(y,m)u, are localized Newton-Wigner states.® Therefore, for an arbi-
trarily chosen initial state, we obtain P(y,7)=|Z,Vku¥(y, DA,

We now consider an arbitrary m-dimensional hypersurface E™CS. An element of
volume of this hypersurface has the form dV™=ZXg#a.anCy  , 1*/\ ... /\ [%n, where
/“l‘al ..... am:%E;';lQai and Ca ,,,,,,
position of the hypersurface in S. Therefore, the behavior of this element as a function of

time is determined by quantities of the type g#=. In the quantum theory quantities such
as the volume are operators and must be averaged over the quantum state.

am(x) are arbitrary constant functions which give the

It turns out that in the asymptotic limit (g—0) for n=<<9 the behavior of different
m-dimensional volumes as a function of time exhibits universal properties. This is be-
cause the main contribution to averages of the type {g#~) comes from a small neighbor-
hood of points y* e K, where the exponents w,, assume minimum values. Such points lie
on the boundary /K, and the minimum values of the exponents are given by the expres-
sions with u¥=—m(n—m—2)/2(n+m) for m<n—2, u¥_,=uk =0, and u,=1/2.
Specifically, 2, determines the minimum admissable value Q;, of the anisotropy
parameters.’ Since ¢,;(JK)=0, near the boundary JK we have ¢,~ 7,(u— u*) and the
probability density assumes the form (we assume that n>3):

Pu)= fKP(y,T)ﬁ(M—M(y))\/Zd’""y~Bm(T)(;L—,u*)", m— ¥,

In the limit g— 0 we thus obtain for the moments of the functions g#= the expres-
sion (L>0)

Mm)L

((g#m)")y=D,(L,7) (11)

(LIn /g, )"+t
where g, =g(7,y*), and D,, is a slowly (logarithmically) varying function of time,
which depends on the choice of the initial quantum state. For m<n—2 we have p% <0
and therefore the volume of an arbitrary hypersurface 2™, whose dimension is less than
n—2, is found to be compressed (we note that this still does not solve the problem of
compactification of the extra dimensions, and only shows the initial tendency toward
such compactification; the question of the later stage and its stability remains open).? In
the early universe the number of spatial dimensions can thus be effectively reduced to
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three. The law of expansion of the remaining three-dimensional space [complementary to
the (n~3)-dimensional hypersurface] can be estimated as Vy~g®2*% where k=3(;
~fn—3)=(n—2)/(2n—3), which corresponds to an effective equation of state of the
matter p=(n/3n—6)e (we recall that near a singularity we have g~12, where ¢ is the
synchronous time).

The situation is fundamentally different for the dimensions exceeding n=9. In this
case the potential in Eq. (4) no longer limits the space-like part of the configuration space
(the region K has an infinite volume), and therefore the stationary states (8) are no longer
localized in terms of the exponents w. If a state (wave packet) which is localized with
respect to w is prepared, then such a packet starts to spread with time and its center of
gravity recedes to infinity in the configuration space (in the classical theory this corre-
sponds to the fact that the evolution of the metric is described by a stable Kasner regime).
Different averages (and the number of collapsing directions) are therefore found to de-
pend strongly on the choice of the initial state.

In conclusion, we note that in the classical theory with n<<10 the evolution of the
metric becomes stochastic,” and the properties of the stochastic process are described by
an invariant measure (see also Ref. 10 ). Using this measure, it is possible to estimate the
‘behavior of the average m-dimensional volumes. It turns out that these estimates are
identical to expression (11) up to a logarithmic factor {with the substitution n—n—2 in
Eq. (11) and D,, which are now constants]. We note, however, that in the classical theory
such estimates are of limited value, since the need for a probabilistic description arises as
a result of the increase in the uncertainty in prescribing the initial conditions. In the
quantum theory, however, the description is probabilistic from the onset and only the
average values of different operators have physical (experimental) status.
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behavior of the metric in the process of cosmological collapse with exponents of different
sign can be interpreted as an effective dynamical reduction of the space dimension.
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