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The anomalous temperature dependence, determined by scattering of
electrons whose energy is close to a Fermi surface intersecting van
Hove singularities, of the conductivity and Hall constant is
calculated. © 1995 American Institute of Physics.

The temperature dependence of the transport coefficients in a metal is determined by
the electron-phonon and electron-electron part of the collision integral. In a wide tem-
perature range, scattering of electrons by phonons makes the main contribution to the
resistance. At low temperatures, however, electron-electron scattering processes play the
main role. In the present paper an electronic system with strong repulsion in the same
cell, which results in splitting of the allowed electron band into bottom and top subbands,
is studied. In the limit of infinite Hubbard energy, it is sufficient to study only the bottom
subband, which has the same electronic spectrum e(p) as in the tight-binding approxi-
mation, but the hopping integral depends on the number of electrons () per unit cell:!

Ep=fe(p)—u- (1)
Here f is the so-called end factor: f=1—n/2—for the bottom Hubbard subband and
Jf=n/2—for the top subband.

The chemical potential u is determined in terms of the electron density » by means
of the equation of state, which in our approximation (Hubbard I) for the bottom subband
has the form:

n=2f 3p ny(&p), )]
where np(€) is the Fermi distribution function.

Cluster calculations? for a square lattice give in the limiting case of infinite Hubbard
energy an equation of state n=n(u) at 7=0 which is qualitatively identical to Eq. (2).

In the present paper the characteristic features of the temperature dependence of the
electron-electron collision integrals are studied under the condition that the Fermi surface
passes near van Hove singularities. In the simplest cases of square and bec lattices, zero
Fermi energy and n=2/3 correspond to the points of the van Hove singularities.

We seek the solution of the transport equation in the standard form:
O(p)=np(&p)—np(Ep)g(p). The equation linearized with respect to the small correc-
tion g(p) can then be written in the form:

, e ag e
n(Ep)| e(B-v)= [vxH] 20 | ==J"(g). 3
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In the zeroth approximation of the magnetic field H, it is natral to seek the solution
go(p) of the transport equation in the form of products of e(E-v) by an unknown
function of the excitation energy 7,(£p):go(p)=e(E-v)7y. To a first approximation of
the magnetic field directed along the z axis, we obtain the following equation for

g1(p):

H P , E AV, v, _ _js @
¢ nF(gp) agpy Ux aapx vy To= (gl)

Therefore, if the entire angular dependence of the zeroth approximation is deter-
mined by the factor (E-v), then in the linear approximation in the magnetic field the
angular dependence is determined by the factor in braces on the left-hand side of the
integral equation (4).

In the simplest case of a square lattice ep= —cos p,—cos p,,
go=eToEy sinp,; g =eH T 1o(— E,cos p,sin py+Eycos pysin p,)/c. (5)

If it is assumed that the functions 7, and 7, have no singularities, then the conductivity
o and the Hall constant R are determined by integrals over the Fermi surface:

o=e’ry{(sin p,)?)/m*; tan 6=E,/E,=er H((sin p,)’cos,)/m*c((sin p,)?),

R=E,/E H,=1{(sin p,)?cos p,)/croe{(sin p,)*){(sin p,)?),

where the angular brackets indicate integration with the factor §(&p). In what follows, it
is assumed that the effective mass m* = 1.

The minimum value of the chemical potential corresponds to the point P(0,0) near
which the sign of the Hall constant coincides with the sign of the charge e. As the density
increases, the quantity |R| decreases to zero, and at some concentration the sign of R is
different from the sign of the charge ¢. This corresponds to additional filling of the
bottom Hubbard subband. For a square lattice all averages (...) in Eq. (6) can be ex-
pressed in terms of the complete elliptic integrals of the first and second kinds K (k) and

E(k) with the argument k= 1 — (/2% ((sin p)2)=2Ek)— (1 - KKK}/ 7%
((sin p ,)*cos pg)=— u[K(k)—E(k)]/27°f. (7

Therefore, the Hall constant vanishes at =0 for the energy surface that passes through
the van Hove singular points: A=(0,7) and B=(,0).

As follows from relations (6), the conductivity and Hall constant are determined by
two relaxation times, which should be sought from the solution of the transport equation.

To write the transport equation, it is necessary to know the quantum-mechanical
transition probability W for scattering with prescribed momenta p; and spins 0. This
probability is expressed in terms of the exact scattering amplitude. It was calculated in
the Born approximation by the present author in Ref. 3 . We assume that the electron
density is close to the value 2/3 (Jul<1). If the excitation energy &
=—(cos p,+cos p,)—u, then near the van Hove points A(p,=0, p,=w) and
B(p,=m, p,=0) the excitation energies are hyperbolic and the effective masses in them
have opposite signs:
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EF=(2~kD2—p;  E7=(—qi+q))/2— p. (8)

To find the temperature dependence of the resistivity p(T), we employ a variational
principle (see, for example, Ref. 4):

4
p(T)=2, W[+~ - M,g {sech(&p,/2T)}(1/8TD?). )

Here the summation extends over the momenta p; , of the scattering particles and p; 4 of
the scattered particles; W is the scattering probability; since the vector D is the integral of
4e v over the Fermi surface, it must be assumed that it does not depend on the tem-
perature.

We introduce the variables q=p;—p;=p,— P4, 2p=p;+p;, 2p'=p,+py, and
then we employ, in the case of a two-dimensional lattice, instead of the four momentum
variables p and p’ the energy variables u,u’,v=—v’'=():

2u=&ps)+&(p1): 2 =&p)+ &P 20=E(p3)—Epy);
20" =&(pa) — &(p2),

where £(p) is the excitation energy (1). Separating the integrals over the transferred
energy () and the transferred momentum ¢, we obtain

( _fdudu'dQW[t//1+t//2—1//3—¢4]2H0(u)ng(u')dq
pLEI= Tho(Qu)Tk_o(— Q1" )sinh?(Q/T) 8 TD?

(10)

Here 11 ()= tanh[(x+2)/2T — tanh[(«—2)/2T], Jk,({},u) is the Jacobian of the trans-
formation from the variables u,u’,{) to the variables p,p’ with fixed g. In the limiting
case of low temperatures the quantity Iln(x) is of a step character: Ilg(u)
+2signQ{6(0%—u?)}, so that the region of integration over the variables u,u’, and
Q is of order T°. If the Fermi surface passes near van Hove points, | x| <1, the Jacobians
are of the order of the largest of — 7 or |u|. We thus conclude that in the region of the
lowest temperatures T<<|u|<1 the Jacobians are of the order of T?%/|u|, so that the
resistance increases as T2/|u|. In the region of the high temperatures 1>7>|pu| the
Jacobians are of order T and for this reason the resistance increases linearly (since
Jdq~T).

The estimates presented above are valid under the natural assumption that the sym-
metrized combination of the trial functions i, + ¢, — 3 — ¥, does not vanish and has no
singularities in the important region of integration over both the energy variables and the
transferred momentum variables q. To analyze the possible variants, we choose a trial
function equal to the velocity in one of the principal directions («) ¢=sin @ and we
study four types of collision integrals corresponding to scattering by different van Hove
points. a) In the case of scattering between identical points A;+A,+A;+A, the linear
combination of the trial functions G =sin «;+sin a,—sin a;—sin a,, expressed in terms
of the momentum transfer ¢ and the momenta p= (p;+p,)/2, p' =(ps+p,)/2 in a given
direction «, has the form:

G =2sin(q/2)[cos p' —cos p]. (11)

132 JETP Lett,, Vol. 62, No. 2, 25 July 1995 R. O. Zaitsev 132



b) For scattering with umklapp A, +A,—B;+B, the momenta a;,=7+p;, and
@,,= P2, but we have, as before, p=(p;+p,)/2, p’' =(ps+p,)/2, so that

G=2cos(q/2)[sin p' +sin p]. (12)

¢) In the case of scattering by different van Hove points A;+B,— A3+ B,, when
a3=p3 and ay4=m+p,,, we have

G=—2sin(q/2)[ cos p' +cos p]. (13)

d) In the case of scattering with a large momentum transfer, close to half the reciprocal
lattice vector A+ B,—B;+A,, when @, 4=p, 4 and a,;=m+p,3, we have

G=2cos(q/2)[sin p—sin p']. (14)

We note that for the hyperbolic model (p, p’'—0) in case a) the trial function G van-
ishes. This corresponds in an obvious way to vanishing of the contribution from normal
scattering processes. In this limit the largest contribution comes from case ¢} — scatter-
ing of particles with effective mass of opposite sign and low momentum transfer —
Baber scattering.’

The scattering with umklapp — case b) and also case d) in the hyperbolic model (8)
make a contribution of the order of the square of the momenta p or p’, which ultimately
leads to the appearance of an extra factor of 7 compared to case c).

In the low-temperature limit the power-law contribution, acccording to Eq. (10),
comes from a region of low transferred energy {}<<7. In the limit 1 -0 with a fixed
momentum transfer ¢ the regions of integration over the momenta p and p' are identical
in cases a) and d), while in case b) their signs are different. It can be concluded, therefore,
that the case A, +B,—A;+ B4 makes the main contribution. If it is assumed that the
probability of this scattering process does not vanish and has no singularities on the van
Hove energy surface, then the linear behavior of the resistance starts at temperatures of
the order of |u|. At low temperatures T<¢|u| we obtain the same dependence T2 as in the
Landau—Pomeranchuk theory,® but enhanced by the factor In({u|/T).

To calculate the temperature dependence of the orbital relaxation time 7,, we em-
ploy again a variational principle. According to Eq. (6), in the 7-approximation the Hall
constant R can be expressed in terms of the ratio of the reciprocal 1/7, of the longitu-
dinal relaxation time and the reciprocal 1/7; of the transverse relaxation time. In general,
the entire temperature dependence is determined by the ratio of the integrals:

RIR={[y + o= s — Y {01+ 02— 03— @41}, (15)

where the braces indicate integration over all energy and angular variables with the same
factors as in Eq. (10). Here ¢; is a trial function, which corresponds to the left side of the
transport equation (4), which is linearized with respect to the external magnetic field. If
the velocity in the principal direction « is chosen as the trial function ¢, then the function
¢ must be sought in the form sina cos B, where £ is the dimensionless momentum in a
different principal direction. At a transition from one van Hove point to another, the
function ¢ does not change. For this reason, the linear combination F
= @+ @, @3 ¢, has the same form for all four singular collision integrals (11)—(14),
i.e. for cases a, b, ¢, and d:
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F==2{c, s,cos(p,)cos(p,) = s,c,sin(p)sin(p )} +2{p,—py:p,—p;}.  (16)

Here s,=sin(g, /2), ¢,=cos(q,/2), and v=x,y. We see that in the hyperbolic limit the
trial function F depends on the products of momenta py\p, or p,p, . Moreover, it van-
ishes when the momenta p and p' are equal, when the momenta p and p’ have different
signs, and also when the momenta p and p’ differ by half a reciprocal lattice vector
p—p’'=(m,m). There properties of the function F lead to the fact that the integration
over the energy variables # and «’ with the function F? in the limit T<<1 gives a factor
Q*, while after integrating with the function G=v;+v,— v;—v, the leading term is of
order (3%, The integration of power-law functions with the factor sinh~%({)/T) determines
the temperature dependence of expression (15).

The temperature dependence of the Hall constant thus appears because the tempera-
ture dependence of the transverse relaxation time is different from that of the longitudinal
relaxation time. The temperature expansion of the inverse transverse relaxation time
starts with the power T'* at low temperature and the power T ? at high temperature. The
expansion of the reciprocal of the longitudinal relaxation time starts with the power T % at
low temperatures and 7" at high temperatures, but it contains anisotropic terms of the
same order of magnitude as in the case of the reciprocal of the transverse relaxation time.
We therefore conclude that for electronic densities at which the Fermi surface is close to
van Hove singularities the Hall constant increases with decreasing temperature

R=A+(BIT)+(CIT?). a7

The coefficients A, B, and C depend strongly on the position of the Fermi level. All three
coefficients change sign when the van Hove singularities lie on the Fermi surface.

The existence of a temperature range where the resistance is a linear function of the
temperature is also determined by the closeness to van Hove singularities. At tempera-
tures lower than the energy distance from the van Hove surface the temperature depen-
dence of the resistance is quadratic.

All three phenomena are characteristic of the two-dimensional Hubbard model and
are manifested when the scattering probability (W) on the Fermi surface does not vanish
and has no singularities. Calculations of the scattering amplitude, in terms of which the
scattering probability W is expressed, can be made on the basis of the parquette
approximation.” This is a subject which will be considered separately.

As follows from the general expression (16), the qualitative form of the temperature
dependence of the Hall constant (17) remains unchanged if the transition probability is a
power-law function of the energy transfer {}. As far as the temperature dependence of the
resistivity is concerned, there are two possibilities. 1) The above-considered case in
which the transition probability is finite in a wide energy range near the Fermi surface. In
this case the resistance has a linear temperature dependence in the temperature range
starting with some characteristic temperature T, which depends on the closeness of the
electron density n to the value ng for which the Hall constant vanishes. If T<<T, then
the resistance increases according to a law close to 72, For n=n, we have a linear law
at all temperatures. Laws of this type are observed in experiments on Ln,_,Sr,CuQO,
(Ref. 8). According to our interpretation, the temperature 7T, implies that the Fermi
surface is close to the energy surface that experiences van Hove singularities. The case 2)
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corresponds to the case in which the scattering amplitude vanishes on the van Hove
surface. This is obtained in the Born approximation for the classical Hubbard model.? In
this situation the scattering from singular points is no more important than the scattering
from the rest of the Fermi surface. For this reason, the quadratic law for the resistance
applies in a wide temperature range, as is the case in Nd,_,Ce,CuQ, (Ref. 9). In the
compound YBa,Cu30,_;s an anomalous temperature dependence of the Hall constant
was observed in Ref. 10, in agreement with Eq. (17).
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