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New characteristic behavior of a nematic liquid crystal (NLC) under
the simultaneous action of electric fields with two different frequencies
is reported. The changes in the external parameters gave rise to a series
of new phenomena: In the case of close frequencies a great diversity of
structures of the spatially periodic distribution of the director, including
new structures which “intergrow” and “flicker” with the beat fre-
quency, was recorded. In the case of a large frequency difference the
critical field for the appearance of Williams domains depends mono-
tonically on the higher frequency and this dependence saturates. A theo-
retical explanation of the observed effects is given. © 1995 American
Institute of Physics.

1. Electrohydrodynamic instabilities (EHI) in liquid crystals (LCs) have traditionally
been investigated in constant or alternating sinusoidal electric fields. Depending on the
characteristics of the liquid crystals (anisotropy of the permittivity, conductivity, and
viscosity), different structures appear in different frequency ranges: Williams domains,
cellular structures, and others. Since the response of a liquid crystal to an external action
is nonlinear, it can be expected that the application of an external electric field with a
more complicated (than sinusoidal) temporal behavior will lead both to the formation of
structures of a new type and to a change in the characteristics of known structures. The
simplest case of a more complicated signal is a superposition of two harmonic waves
with the same amplitude. In the present paper we report the results of an experimental
study of nematic liquid crystals in a biharmonic electric field.

2. A MBBA nematic liquid crystal with a mesophase in the temperature range
21-40 °C was investigated. The crystal was placed in a flat cell with a planar orientation
of the director. A sinusoidal voltage with the same amplitude from two generators was
applied to the semitransparent electrodes of the hermetically sealed cell. The frequency of
one signal was fixed and the frequency of the other signal was varied in the range 20
Hz-100 kHz.

To record the threshold of an instability, we made use of the fact that the structure
which is formed has a spatially periodic character. The instability threshold is recorded
according to the appearance of a diffraction pattern produced after monochromatic light
from a He—Ne laser passes through the liquid-crystal cell. At voltages close to the thresh-
old voltage, initially only one secondary maximum appears on each side of the diffraction
pattern (usually the strongest second-order maxima). This indicates the onset of the
deformation of the director. This method always makes it possible to record the same
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FIG. 1. Picture of the instability of a ZHK-440 liquid crystal. This picture was obtained in a flat cell at room
temperature in the beat regime: The carrying frequency was 300 Hz, the beat period was 1 s, and the maximum
amplitude was 30 V.

(over a period) deviation of the director with the indicated form of the signals employed.

The experimental apparatus makes it possible to observe the state of the mesophase
directly through a polarization microscope and to follow, at the same time, the intertrans-
formations of the possible structures as a function of the applied voltages and ratio of the
frequency. We made a video film in which the large diversity of all possible known
structures, as well as the appearance of new structures, two of which are shown in Figs.
1 and 2, were recorded. The peculiarities of the behavior of the medium are observed
even on the plot of the critical field for the appearance of Williams domains versus the
frequencies of the applied voltages.

Figure 3 shows for a 48-um-thick cell the threshold voltage (V) of the instability
of a uniform distribution of the director as a function of the frequency of the applied

FIG. 2. Picture of the instability of a ZHK-440 liquid crystal. This picture was obtained in a flat cell at room
temperature in the beat regime: The carrying frequency was 350 Hz, the beat period was 1.5 s, and the
maximum amplitude was 50 V.
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FIG. 3. Voltage V, at which an instability appears versus the frequency f, (Hz) with fixed frequency f,: curve
1—100 Hz; 2—200 Hz; 3—300 Hz; 4—400 Hz; 5—500 Hz.

voltage of one of the components of the electric signal with the other frequency held
fixed. It should be noted that the threshold field saturates as a function of the high
frequency in the case of a large frequency difference and the threshold voltage is mini-
mum when the frequencies are equal to one another.

The behavior of the threshold voltages with a small frequency difference (beats) was
investigated in greater detail. The diffraction maxima, according to which the instability
threshold was recorded in this region periodically, appear and disappear in time with a
frequency equal to the beat frequency. As the voltage increases, the diffraction maxima of
the next order appear, just as in all other cases, and the entire diffraction pattern “scin-
tillates.” As the frequency difference increases, the scintillation frequency increases and
at some frequency difference the pattern becomes stationary.

Figure 4 shows the region of similar frequencies as a plot of V; versus v'"% The
above-described temporal behavior of the diffraction pattern is evidently determined by
the time required for the structure, which arises after the instability of the uniform
distribution of the director, to intergrow and vanish,

3. The explanation of the observed characteristics of the behavior of the threshold
values of the external electric field as a function of the relative frequency is based on the
dynamics of the mesophase, which in our case depends on the behavior of the fast
(charge) and slow (director) subsystems of the medium. When the conditions of applica-
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FIG. 4. V,, in the beat regime versus the frequency (A f) "2=(f, - f,) 1? with fixed frequency f,: curve /—100
Hz; 2—200 Hz; 3—300 Hz.

bility are satisfied, it can be assumed that the dynamics of the liquid crystal is described
by the well-known equations'™*

GtoqtayEV=0, W+wV+NE*W+uEq=0. )

The first equation describes the dynamics of the charge g and the second equation
describes the curvature of the director ¥ =06/9z, where 8 is the angle between the
director and the x axis, which is directed along the sample. A biharmonic electric field
is applied perpendicular to the sample: E=EFE coswt+E)cos wy=2E,
X cos wt cos Awt, w=1/2(w,+ @,),Aw=1/2(w|— ;). The parameters w., wy, oy,
A, and w have the same meaning as in Refs. 1-4 .

The behavior of the medium depends on the ratio of the applied frequencies and the
relaxation times of the charge and the director. To determine the character of the behavior
of the mesophase, we introduce fast and slow variables: g =g+ 8g, ¥ =¥+ &V, where
gand ¥ describe the values of the charge and curvature averaged over a long segment of
time, and dq and & W are the fast changes in the separate subsystems. Substituting this
representation into Eq. (1) and performing the corresponding averaging, we obtain the
equations

Grwd+oyES W=0, V+(w,+\B)V+ uEsq=0. 2)

Subtracting Eq. (2} from Eq. (1), we obtain the following system of equtions for the fast
variables:

8+ w, 8q+ayEV=0, 6V+(wy+NE)oW + pEG=0. (3)
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In Eqgs. (2) and (3) only the lowest harmonics of the frequency e are retained. The
overbar on the separate terms indicates averaging over the corresponding times. Depend-
ing on the observed regimes, the averaging procedure and, correspondingly, the behavior
of the medium will be different.

a) In the case where the frequency difference is large (0w,>w,, 0, Aw,
® = we,wg), the averaging must be performed over times such that AwT > 1. The
behavior of the mesophase can then be described by slow changes in the quantities ¥ and
¢ over a time much longer than the averaging time. In solving the system (3), the total
time dependence of E must be taken into account and the solutions for dg and 6 ¥ must
be sought in the form

doq a A
_ . . +
pan bl sin wf sin Aw!t

a

20 .
sin wt cos Awt
b,

(25} ay

+ cos wt cos Awt, 4)

3 4

cos wt sin Awt+{

where the top rows refer to 6g and the bottom rows refer to 8. Substituting expression
(4) into the corresponding equations {Egs. (3)] and equating the coefficients of the same
combinations of transcendental functions, we obtain an algebraic system for determining
the coefficients a and b. Having found the corresponding coefficients and having per-
formed the averaging Ed8q=1/2Eqa,, ESY =1/2Eb,, 1_52=E(2,, we obtain closed equa-
tions for ¥ and g

Eloypo o+ ol +Aw?)
(02 + 0+ Aw?)?— 4A 0 ?

«if+[ wg— }\?:0, )

=0,

. Eioypo0*+ o5+ Aw?)
+ —_
a7 @e (0*+ 02+ Aw?)?— 4A w0’
where w;= w0+)\E%. Equating to zero the damping rates of the solutions of system (5),

we obtain a condition for finding the critical field for the appearance of instabilities. In
the conduction regime, which is described by the first equation, the critical field is

Ez—ﬂ 2(wf+w§)(w§+wf)
N EoXoPt0it200)— 20+ 0’) (03t wd)’

©)

where & =p oy /w, has the same meaning as in Refs. 1-4 . In the dielectric regime,
where w;=\E}, we obtain E2=2w,/\(£2—2)"2. It is evident from expression (6) that
switching of the regimes occurs at the frequency
2 2, 2
W2m e ol E(1+ wy »f) 4
R P TE R T e

which in the two-frequency regime is not always satisfied. For example, for
£>2(1+ w%/ wz) switching of regimes does not occur. This was confirmed experimen-
tally in the present work. Moreover, the theoretical dependence of the magnitude of the
critical field on the frequencies w,; and w,, as calculated from Eq. (6), agrees very well
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with the experimental data. For ;> w.>w, the critical field no longer depends on the
high frequency and saturates at the value E3= w(z) -2/\(£2—2), which was also confirmed
experimentally (Fig. 3). Admittedly, to obtain quantitative agreement between the experi-
mental values of the critical field and the theoretical calculations, it must be assumed that
the coefficient £2 depends on the lower frequency; this can be explained by the dispersion
of the Leslie coefficients. It is well known that in this frequency range the Leslie coef-
ficients can exhibit dispersion® and the sharp temperature dependence of £, observed
experimentally, indicates that £ is very sensitive to the viscosity, which can be expressed
in terms of these coefficients.

b) We now consider the case in which the applied frequencies are close; specifically,
Aw<w. In this case the dependence on the slow change of the parameters after averag-
ing must be retained, for example,

., 1T
l?=—f E(t)dt=2E} cos Awt.
TJo
Determining 8q and 8% from the system of equations (3) and substituting the results into

Eq. (1), we obtain equations for ¥ and g Since the experiment | requires that the slow
subsystem be observed, we preesent here only the equation for P

—= MOgwey mMoywe\ =
Vi wyt+|A— m)EO+ A— W)EO cos ZAwt)‘I’—O, @)
whose solution is
¥ =const oyt =Y Sin 2A0r (8)
const - exp Y 2Aw S wl,

where y=wo+{\— poyo/(w*+w)}E}. The critical field in which the instability
first appears is determined from the condition y=0. This field is

, o 1+w2/w%

E — —
.

0N E—(1+ 0% w?)

The experimentally observed “scintillation” of the new structure with the beat period
27/(w;~ w,) can thus be explained by the periodic behavior of the slope of the director
in accordance with Eq. (8). The “intergrowth” of the structure can be explained on the
basis of Eq. (8). The field E, averaged over the frequency o, is a periodic function with
the period T=n/Aw. If E4>E, then the field Ecan be greater than the critical field
only for part of the period. Depending on this fraction and the magnitude of the field
Eq, there may or may not be enough time for the structure to “intergrow’ to the size
recorded in the experiment (we have in mind the appearance of diffraction maxima). The
field E for which the diffraction maxima first appeared was recorded in the experiment.
This means that the quantity ¥ was the same in each such measurement and corre-
sponded to its maximum value over the period. Therefore, in our measurements we have

yT o mwg
20w 2Aw

—yT=~ (EYEL.—1), 9)
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we thus see that the observed values of the critical field are linear functions of
(A )" The relation obtained above suggests a fast method for determining within only
several periods the critical field for the appearance of Williams domains Ey(w) with a
fixed frequency w. For example, if Eq=E | for Aw=Aw, and E4=E, for Aw=w,, we
easily find that E(Z)C=(E§—Ewa2/Awl)/(l —Aw,/Aw,;). The experimental depen-
dence of the critical field on the frequency difference (Fig. 4) agrees very well with the
theoretical formula (9).
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