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It is generally believed that in frustrated two-dimensional spin-1/2
antiferromagnets the long-range antiferromagnetic order may be absent
because of quantum spin fluctuations. A relatively weak magnetic field
may induce the canted antiferromagnetic ordering instead of the usual
one-sublattice magnetic ordering. © 1995 American Institute of Phys-
ics.

The problem of the long-range antiferromagnetic (AFM) order in frustrated two-
dimensional (2D) spin-1/2 Heisenberg systems draws much attention because of its rel-
evance to high-T ', superconductors. Usually one takes into account the exchange integrals
J, and J, between the first and second neighbors, chosen to be positive for AFM ex-
change, and considers a square lattice of spins. If one treats the spins as classical vectors,
then for J,>2J, a staggered AFM structure with wave vector Q=(1r,7) should be real-
ized, and for J,<<2J, a stripe ordering with Q=(0, 7).

But, as is well known, the classical AFM ordering is not an exact eigenstate of the
Heisenberg Hamiltonian, and the spins exhibit zero-point spin oscillations. Even in ab-
sence of frustration their amplitude in a 2D S=1/2 antiferromagnet is so large that the
question arises of whether AFM long-range order (LRO) exists in them. An analysis
carried out in Ref. 1 suggests that it apparently does exist, even though the energy
difference between the antiferromagnetically ordered and disordered RVB states is neg-
ligible. In this case the standard spin-wave approximation yields unexpectedly accurate
estimates for the mean spin M and the ground state energy, the former being very close
to the experimental values of the mean spins in high-T', superconductors.

While the case J,=0 is marginal, much more suspicious in this respect is the case
of J, close to 2J,, where the role of spin fluctuations is still more enhanced. This is a
consequence of the fact that the exchanges between the first and second nearest neighbors
tend to establish different types of magnetic ordering and for this reason interfere with
each other. As was shown in Ref. 2 on the basis of the usual spin-wave approximation
and Bogolyubov transformation of the spin-deviation operators bq = uBq + v _ o8 * q- the
mean spin M = 1/2 — 1/N§)|vq|2 turns out to be negative in the vicinity of the phase
boundary J,=2J,. The conclusion that the long-range order (LRO) should be absent
there was made in Ref, 2, although strictly speaking, this only means that the spin-wave
approximation is inapplicable there.

Subsequent investigations were not convincing enough to support or to reject unam-
biguously the idea of vanishing of the LRO (see the review in Ref. 3). Nevertheless,
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keeping in mind the marginal character of the AFM LRO at J,=0, we believe that the
opinion that it is absent at J,~2J, is quite reasonable.

If the AFM LRO is really absent, the idea arises that AFM ordering may appear in
an external magnetic field, since the latter causes spin canting and, hence, diminishes the
amplitude of the zero-point spin fluctuations (in the spin-flopped state they are com-
pletely absent). Then a magnetic field, in addition to the standard magnetization, can
produce a nonstandard effect: it can induce AFM ordering. Judging from the fact that the
magnetic anisotropy by itself can suppress the LRO window, returning the system to the
classical AFM ordering specific to the Ising model, one may conclude that its presence
can drastically reduce the field strength at which the LRO appears.

One considers a square lattice of spin-1/2 magnetic atoms in the (xy) plane, the x
axis being the easy axis. The magnetic field is perpendicular to the (xy) plane. The
Hamiltonian of the system under consideration is

1 1
e Egf L A4S JigEgt _
H 2&2&:‘& J§si At A 2E‘§gy‘,gjzsgsg+5 H§g: s, (1)

where Sg is the spin projection of the atom g = (g,,g,) onto the £ axis (é=x,y or z)
Vectors A and & connect the first and second nearest neighbors, respectively. The mag-
netic anisotropy corresponds to the anisotropy of the exchange integrals J? = J}
= J;, J} = uJ; with the anisotropy parameter u exceeding 1 (i=1,2).

As the aim of the present investigation is to obtain only semiquantitative results, we
use the simplest version of the theory which leads to the LRO window at H =0—the
standard spin-wave approximation of Ref. 1. Moreover, we are unable to decide which
numerical results concerning the width of the window are the most reliable, since the
accuracy of all the approximations described in Ref. 3 is uncontrollable in the absence of
a small parameter.

The procedure of using the spin-wave approximation in an AFM system canted by
an external magnetic field is described in detail in Ref. 4 One introduces local reference
frames (xg,yg,zg) for each atom g in such a way that the Zg axis coincides with the
direction of the sublattice moment for atom g and the y, axis coincides with the y axis in
the laboratory reference frame. Then one uses the Holstein—Primakoff transformation
from the spin component to the magnon operators b;’ » bg in the local frame:

X, > X o i i
.= Hbg +by)=Sicos @~ Spsin@e’ %, S§g=5(b;—bg)=sy , ()

SE=1—b, be=S;sin Oc'®+Sicos O,

where Q is the antiferromagnetic vector of the ordered state. The angle +® between the
z axis and z, axis is determined from the condition of minimum classical energy E,
obtained after substituting (2) in (1) (this condition coincides with the condition that
terms linear in the magnon operators vanish):
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FIG. 1. Dependence of the magnetic moment M (solid curves) and its AFM component M, (dashed curves)
on the frustration parameter @ at H=0 and H=0.62J, for zero anisotropy.
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where H, is the spin—flop field. The expressions for H, and Ej in the staggered Néel
phase are as follows:

HY=20[14+p—a(p—1)], (4)

E”z—l—v-( (J,—J)+T [1+p—a(p—1)]h? 5
0 2.“«121[#“(# )1h%) &)

and for the stripe Landau phase

H:E=2J[1+a(u+1)], (6

N
Eg= = 5lply+di[1+a(u+ 1)]R*] @)

with N being the number of atoms and @=J,/J,. Equating EY (5) and E5 (7), one
obtains the classical boundary «, between phases as a function of u and 4.

The magnon spectrum is found through the Bogolyubov transformation of the boson
operators in (1)-(3):

w(q)=4J, \/Afl—Bz, (3)

where for the Néel phase:

p—1 1+pu
Ag:lu,(l —a)+ajl +—'—2—h2) 'yqd+—-—2—h2ng,
I+pu m—1
BZ=(7h2_ I)qu+a ThZqu (9)

and for Landau phase:
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FIG. 2. Dependence of the magnetic moment M (solid curves) and its AFM component M, (dashed curves)
on the frustration parameter « at H=0 and H=0.34 J, for an anisotropy of 3%.
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The average moment M at T=0 is given by the expression

g A,
N 4q ol@ ()

The summation over q runs over the Brillouin zone.

Z 1 +
M=(Sg=5 — (byby=1-

First, the role of magnetic anisotropy at H=0 will be discussed. As follows from
(11), the LRO window disappears at u=1.045. Thus, the effect considered by us should
be realized for an anisotropy less than 5%. In Fig. 1 the magnetization per atom M and
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FIG. 3. Dependence of the window-closing field on the anisotropy u.
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its AFM component M 4 = Msin ® are represented for an isotropic system (u=1) as a
function of the frustration parameter. It is seen that the quantum fluctuations influence the
staggered LRO much more strongly than the stripe LRO: the window at H=0 is located
between a values of 0.38 and 0.51. But in a field of 0.62 J, (which corresponds to
0.155H ) the window becomes closed. According to Fig. 2, at nonzero anisotropy (3%)
the window at /=0 is much more narrow, and it is closed completely at a field of only
0.34J, (i.e., 0.084H ). The dependence of the window-closing magnetic field on the
magnetic anisotropy is presented in Fig. 3.
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