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We describe the ideas employed in the first special-purpose Wolff clus-
ter algorithm computer able to simulate three-dimensional (3D) Ising
models. The computer is fast enough to generate accurate data for
lattices containing more than 16 million spins, at and near the Ising
critical point. We have used this computer to obtain test results for the
2D and 3D Ising models at criticality. These are in an excellent agree-
ment with exact results and with independent simulations in software.
© 1995 American Institute of Physics.

During the last decades, the Ising model has acquired a reputation as a breeding
ground for the development of new approaches to the physics of phase transitions.

The exact solution of the 2D model, first given by Onsager,' has been simplified by
a number of authors. Now it is clear that the 2D Ising model is just a system of free
fermions. Nevertheless, even in the 2D case intriguing problems still exist. For example,
we mention the influence of impurities on critical behavior.?

In the 3D case no exact solution is available. Theoretical attempts to solve the model
have gone on for decades, and many interesting methods have been developed along the
way, but ultimate success has not yet been achieved.

In the absence of an exact theory, approximate results for the 3D Ising universality
class have been obtained by series expansion®* and numerical renormalization-group>*
methods. The accuracies of these analyses exceed those of typical experiments on sys-
tems believed to be in the Ising universality class.

Reliable data for the 3D Ising model can be obtained by computer simulations.
Considerable efforts have taken place in this direction (see, e.g., Ref. 7-9, and the
references cited therein), but many questions still remain.

Due to the random nature of the Monte Carlo approach, the statistical errors de-
crease in inverse proportion to the square root of the simulation time. Therefore, one
needs a lot of computer time to obtain accurate results. This time becomes especially long
in the most interesting region: the phase transition, where the fluctuations are huge, and
the relaxation time tends to infinity.
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Fortunately, critical slowing down can be suppressed by using a cluster algorithm. It
is clear that near the critical point, where the correlation length tends to infinity, it would
be preferable to flip whole clusters of spins instead of independent spins. Swendsen and
Wang'® discovered the proper way to build and flip such clusters. Indeed, simulations
confirm that the critical slowing down reduces drastically when cluster-flip algorithms are
used.

The Swendsen—Wang method was modified by Wolff.!! The Wolff algorithm is even
more efficient. Moreover, it is so simple that it can relatively easily be implemented in
hardware.

The first cluster-algorithm special-purpose computer (SPC)'*"3 was specifically built

to investigate the 2D Ising model with bond randomness.'*!* It performs very efficiently,
in particular near the critical temperature T,. The cost of the electronic components of
this SPC was less than that of a typical personal computer, whereas its speed compares
favorably with that of a large mainframe computer.

Inspired by the success of the 2D SPC, we decided to follow the same approach for
the 3D Ising model. The new 3D SPC has in common with the 2D SPC the property that
it implements the Wolff algorithm in hardware. However, in other respects it is very
different. The main changes include new very efficient organization of the spin memory,
a new structure of the random number generator (due to A. Compagner'®), and a much
more efficient storage method for the cluster spin addresses. These modifications have
permitted an increase of the number of lattice spins from 2% in the 2D SPC to 2%* in the
new 3D SPC.

The speed of both cluster SPC’s is completely determined by the memory cycle
times and thus does not depend on the speed of any microprocessors. Both the 2D and the
3D SPC spend three spin-memory cycle times 7, per cluster spin. In the 3D SPC we used
4-megabit dynamic memories with £, =125 ns; thus it requires only 375 ns per cluster
spin. Our results, shown below in Table II demonstrate that this speed enables the gen-
eration of accurate data, even in the most difficult case of the largest 3D lattice, contain-
ing 16,777,216 spins, at the critical point.

The 3D SPC structure, shown in Fig. 1, is largely dictated by the Wolff algorithm
used. The Wolff cluster formation process is determined by the following procedure.

First, a random site of the lattice is selected. This determines the first node: the
central spin on this site and its 6 nearest neighbors. By definition, this central spin is the
first member of the cluster. Then, its neighbors are ‘processed,’ i.e., it is decided if they
are also included in the cluster. Each neighbor is processed independently.

To be included in the Wolff cluster, the neighbor is required to be parallel to the first
spin (before it is flipped). But this condition is not sufficient. An additional requirement
is that the bond connecting both neighbors is ‘active’; bonds between interacting neigh-
bors are active with a probability P defined by

P=1—e¢ 287" )

where B=1/T, T is the temperature, and J is the coupling constant, which determines the
interaction energy E=—JSS' of two neighbor spins § and S’. When a spin is determined
to be a cluster member, it is flipped immediately. In addition, its address is written in an
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B,

FIG. 1. Block diagram of the SPC.

auxiliary memory. This auxiliary memory contains a list of addresses of spins whose
neighbors are waiting to be processed. Let us explain why this is necessary.

After processing all nearest neighbors of the first cluster spin, a new node cycle is
started. That means that another cluster spin is chosen as the new central spin, its neigh-
bors are processed, and for those that become members of the cluster, the addresses are
written in the auxiliary memory. Then, another node cycle is started, and so on.

At the start of a new node cycle, the auxiliary memory supplies the new central spin
address. However, there are different ways to choose this address.

In the first cluster SPC!? the stack strategy was implemented. Reading and writing
takes place on top of the stack. Thus an address read from the stack is always the last one
that has been written. This strategy is simple, and requires only one stack pointer. But the
required number of memory locations in the stack may exceed half the number of spins
in the system.

An alternative is offered by the queue strategy, which turns out to be much more
economical in terms of memory requirements. In this case the reading operations of the
spin addresses take place in the same order as the writing operations. One might say that
writing takes place on top of the queue, while reading takes place from the bottom. Thus,
in the queue memory, we need both a read pointer and a write pointer, which are in-
creased by 1 after each read or write operation, respectively.

At the start of the cluster, both pointers are equal to each other. During the cluster-
building process, the write pointer is always larger than the read pointer. The cluster is
finished when the read pointer becomes equal to the write pointer—all cluster spins have
acted as the central spin of a node.
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Preliminary simulations by Heringa'’ have shown the largest difference ¢, be-
tween the write and read pointers satisfies.

3L in 2D,

2.5L% in 3D, @

<
qmax~

where L is the linear lattice size. Since the queue address is treated as a cyclic number,
G max 18 interpreted as the minimum size that the queue memory should have. This is a
factor of the order of L smaller than the necessary stack size.

The drawback of the queue strategy is the need to use two pointers. This would slow
down a simulation on a general purpose computer. But the speed of the SPC is not
affected by the use of two pointers. So we implemented the queue in hardware in the case
of the 3D SPC.

Unfortunately, no rigorous theory supporting the queue size limits given in (2) is
known to us. These limits can easily be justified at zero temperature, when a growing
cluster has a simple shape with flat faces, and only the spins on its surface contribute to
the queue size. As the temperature increases, the cluster surface becomes more rough, so
for a given cluster size the surface increases. On the other hand, the mean cluster size
decreases with increasing temperature. So the restrictions (2), while not proved, seem
reasonable.

To be on the safe side, we chose the queue memory size to be several times larger
than required by (2) for the largest lattice size. Moreover, we included a special register
in hardware, which stores the largest queue size occurring during the simulation. This
completely rules out the possibility of unnoticed queue overflow, and permits the deter-
mination of more-precise queue size limits at different temperatures and for different
lattice sizes and shapes.

Next, we discuss the structure of the memory used to store the spin values. What is
the most effective way to organize such a memory?

In view of the speed of the cluster growth process, it is desirable to process the
nearest neighbors of the central spin simultaneously instead of sequentially. To this pur-
pose, the lattice is divided into a number of sublattices called blocks. This is done in such
a way that each of the 7 spins in a node configuration belongs to a different block.
Simultaneous access to all blocks enables the processing of all 6 neighbor spins in
parallel.

Since the number of blocks cannot be less than the number of spins in a node
configuration, the number of blocks must be at least 7. However, the sublattice decom-
position must be compatible with the boundary conditions, which are periodic, and with
the lattice sizes, which are restricted to powers of 2. The number of blocks must be equal
to 8.

The actual block number b assigned to each spin is selected by the following
formula

b=(x+2y+3z)mod 8, (3)
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where the integers x, y, and z are the usual orthogonal lattice coordinates of the spins. It
is easy to check that the definition (3) ensures that all spins in each node have different
block numbers. ‘

Simultaneous access to all 8 blocks yields 8 spins. Only 7 of these are part of the
node configuration. Therefore we included some additional hardware in the SPC to select
the central spin, its left neighbor, its right neighbor, etc. This hardware circuitry is des-
ignated as the block-spin-to-neighbor-spin (BN) distributor in the SPC block diagram
(Fig. 1).

Each block of spins is stored in a physically separate memory (B, in Fig. 1). Each
spin can be a member of 7 different node configurations: it can act as a central spin, or
any of 6 neighbors. But for each node configuration, the queue supplies only one address,
that of the central spin. This address requires minor changes, dependent on the memory
block number, to obtain the proper node spins from the block memories. Therefore, each
block memory has a separate address-changing circuit (4, in Fig. 1).

The values of the node spins are used in the decision-making circuit (DMC) to
decide which of the neighbor spins are included in the cluster and thus must be flipped.
If such spins are found, the DMC gives the necessary signals to flip the spins in the block
memories, and to write their addresses to the queue. When the flips and writes are
finished, it asks the queue for a new mode address.

The decisions taken in the DMC involve the probability of an active bond (1). Thus,
the spin is included in the cluster if it has the right direction and if expression (1) exceeds
a (pseudo) random number.

For this purpose, the SPC includes a random number generator (RNG). The impor-
tance of using an RNG of sufficient quality has amply been demonstrated and
emphasized. 5182

To provide good random numbers, we use an RNG consisting of two separate
shift-register type hardware random number generators—G, and G, . The final random
numbers, which are to be compared with expression (1), are produced by combining the
output of G, and G, by means of the bitwise ‘exclusive OR’ (&) operation. Both G, and
G, produce 32-bit random numbers X(n) according to the following algorithm:

X(n)=X(n—n;)®X(n—n,), 2

where n; and n, are integers in the range between 0 and 21 These integers are program-
mable by the host computer which controls the SPC. For properly chosen integers
ny>n,, the period of the pseudo-random sequence X(n) is

2"—1. (5)

Suitable choices for n, and n, appear in Ref. 22 and references cited therein. In particu-
lar, the data shown below were obtained with

n}=1393 n3=4423 n=471 nd=9689, (©6)

where the indices a and b distinguish between G, and G, . Putting (5) and (6) together,
we see that the periods of the random number sequences are huge.
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TABLE 1. Comparison between SPC data for the 2D Ising model and exact results at 7.

L N E Ee C Cex
16 5-10° 1.453070(6) 1.453065 1.4988(2) 1.4987
32 5-10° 1.433642(13) 1.433658 1.8459(10) 1.8468
64 10° 1.423936(17) 1.423938 2.1935(17) 2.1922
128 5-107 1.419071(17) 1.419076 2.5306(57) 2.5363
256 7.5-10° 1.416622(24) 1.416645 2.865(24) 2.8798

The performance of shift-register RNGs has been tested extensively in combination
with the Wolff algorithm.?> On this basis, we expect that systematic effects will be
negligible in comparison with any realistic statistical errors, both for simulations in two
and in three dimensions using the 3D SPC.

As final tests of the 3D SPC, we performed simulations of 2D and 3D Ising models
by the 3D SPC.

Simulations of the 2D model is possible because the nearest-neighbor couplings in
any of the x, y and z directions can be independently set to zero. Table I shows the
results obtained by the 3D SPC at the 2D critical point 8.=0.44068679 for 5 different
lattice sizes L=L,=L_ . In the simulations of the 2D Ising model we have kept
J.=J,=1, Jy=0, and L= 16.

Here N is the total number of clusters flipped during the simulation. Data were taken
at intervals of 50 Wolff clusters.

The mean number of spins in a cluster at T, is about 1/4 of all lattice spins. The SPC
generates about 7 random numbers per cluster spin. So the SPC uses a total of about
30X N XL? random numbers, which is of the order of 10" for all the cases in Table L

The specific heat C was calculated according to the formula C=B*({E?)—(E)?).
Exact values of the energy per spin E_, and of the specific heat C,, were calculated
according to Ref. 24. The agreement between the Monte Carlo data and the exact results
confirms the proper operation of the 3D SPC and the good quality of the pseudo-random
numbers generated by the SPC.

For the 3D model, the exact values of the thermodynamic properties, and even that
of the critical point, are unknown. However, from previous work (see, e.g., Refs. 7 and 9)
it is clear that 8. should be close to 8;=0.221653. In Table 1I we display data obtained

TABLE II. 3D Ising results taken from 8,.

L N E M o (S(0)S(L/2))
16 10° 1.034618(12) 0.263655(18) 1.80072(29) 0.0835743(95)
32 108 1.007101(35) 0.184671(62) 2.2380(11) 0.041072(22)
64 2.5:107 0.996708(60) 0.12880(18) 2.7080(75) 0.020022(46)
128 10 0.992854(44) 0.08976(25) 3.256(26) 0.009741(44)
256 107 0.991367(19) 0.06184(20) 3.772(42) 0.004651(28)
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TABLE III. Comparison between 3D SPC and GP results.

L type N E c (S(0)S(L/2)) 0

16 SPC 10° 1.034618(12) 1.80072(29)  0.0835743(95)  0.633806(45)
GP 1.5-10° 1.034616(14) 1.80101(19)  0.0835709(95)  0.633752(40)

32 SPC 108 1.007101(35)  2.2380(11) 0.041072(22) 0.62863(18)
GP 1.2-10° 1.007129(10) 2.2370(4) 0.041077(7) 0.62877(6)

at 3, using lattices with different sizes L=L,=L,=L,.

We see that the 3D SPC is not only able to calculate the energy E, specific heat C,
magnetization M, and magnetic susceptibility, but also the spin—spin correlation function
(S(0)S(L/2)).

Since the mean cluster size at B is roughly proportional to L2, one has to flip of the
order of L clusters to obtain an independent spin configuration. This sets the time scale
for the data sampling procedure. Data were taken at intervals of 10 Wolff clusters for
L=16, 32; 50 clusters for L =64; 100 clusters for L=128; and 200 clusters for L =256.

The largest queue size that occurred in the simulations at B; did not exceed 1.5L°.
Thus the 3D condition (2) is indeed satisfied for the very large lattices and the long
simulations used here.

Furthermore, independent Monte Carlo data of sufficient accuracy, obtained by
simulations on a general-purpose computer (GP), are available for system sizes L=16
and 32% and allow another sensitive test. These data, shown in Table III, apply to the
energy, the specified heat, the spin—spin correlation over half the system size, and the
dimensionless ratio Q =(M*)*/(M*).

The data from both sources appear to be in a satisfactory agreement.

We conclude that the first 3D cluster SPC has passed a number of critical tests. It
will serve as a power tool to study the thermodynamics of the Ising model, in particular
the critical properties. Furthermore it will give an opportunity to investigate shift-register
based algorithms for random number generation, which is extremely important in order to
avoid biases in Monte Carlo simulations in a general context.

We are grateful to W. Selke, A. F. Bakker, A. Compagner, J. R. Heringa, and A.
Hoogland for their cooperation and for sharing their insights. Furthermore, we are in-
debted to H. J. M. van Grol for his valuable suggestion to use a queue instead of a stack
memory.

This work was partially supported by Grants 07-13-210 of NWO, the Dutch Orga-
nization of Scientific Research, INTAS-93-0211, M0QOOO of the International Science
Foundation (ISF), and 93-02-2018 of the Russian Fund for Fundamental Research
(RFFR).

180 JETP Lett., Vol. 62, No. 2, 25 July 1995 Talapav et al. 180



De-mail: talapov@itp.ac.ru

'L. Onsager, Phys. Rev. 65, 117 (1944).

2W. Selke, L. N. Shchur, and A. L. Talapov, in Annual Reviews of Computational Physics, ed. by D. Stauffer,
World Scientific, Singapore (1994), p. 17.

3A. J. Liu and M. E. Fisher, Physica A 156, 35 (1989).

*B. G. Nickel and J. J. Rehr, J. Stat. Phys. 61, 1 (1990).

>G. A. Baker, B. G. Nickel, M. S. Green, and D. 1. Meiron, Phys. Rev. B. 17, 1365 (1978).

%), C. Le Guillou and J. Zinn-Justice, Phys. Rev. B 21, 3976 (1930).

TA. M. Ferrenberg and D.P. Landau, Phys. Rev. B 44, 5081 (1991).

8V1. S. Dotsenko, P. Windey, G. Harris ef al., Phys. Rev. Lett. 71, 811 (1993); hep-th/9504076.

°H. W. I. Bldte and G. Kamieniarz, Physica A 196, 1 (1993).

19R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

U, Wolff, Phys. Rev. Lett. 60, 1461 (1988); Nucl. Phys. B 300, 501 (1988).

ZA. L. Talapov, L. N. Shchur, V. B. Andreichenko, and V1. S. Dotsenko, Mod. Phys. Lett. B 6, 1111 (1992).

BA. L. Talapov, V. B. Andreichenko, V1. S. Dotsenko, and L. N. Shchur, Int. J. Mod. Phys. C 4, 787 (1993).

4 A. L. Talapov and L. N. Shchur, Europhys. Lett. 27, 193 (1994).

5A. L. Talapov and L. N. Shchur, J. Phys.: Condens. Matter 6, 8295 (1994).

164, Compagner, Am. J. Phys. §9, 700 (1991); J. Stat. Phys. 63, 883 (1991).

17§, R. Heringa, private communication.

18 A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, Phys. Rev. Lett. 69, 3382 (1992).

W, Selke, A. L. Talapov, and L. N. Shchur, JETP Lett. 58, 665 (1993).

%1, Vattulainen, T. Ala-Nissila, and K. Kankaala, Phys. Rev. Lett. 73, 2513 (1994).

2p. D. Coddington, Int. J. Mod. Phys. C §, 547 (1994).

22J. R. Heringa, H. W. J. Bléte, and A. Compagner, Int. J. Mod. Phys. C 3, 561 (1992).

231, N. Shchur and H. W. J. Bléte, to be published (1995).

24 A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 (1969).

ZH, W. J. Bléte, J. R. Heringa and E. Luijten, to be published (1995).

Published in English in the original Russian journal. Edited by Steve Torstveit.

181 JETP Lett., Vol. 62, No. 2, 25 July 1995 Talapov et al. 181





