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It is shown that in crossed electric and magnetic fields in the strong
electric field limit (Wannier—Stark ladder regime) a magnetic field of
any magnitude plays the role of a small perturbation. The electric field
destroys the complicated structure of the spectrum in a magnetic field.
The role of the magnetic field reduces to a weak modulation of the
Wannier—Stark ladder as a function of the level number. It is also
shown that in contrast to the weak-field limit, the interband light ab-
sorption coefficient is not exponentially small as the electric field in-
creases. The predicted behavior can be directly checked experimentally
on semiconductor superlattices. © 1995 American Institute of Physics.

Interband light absorption in the region of the fundamental absorption edge in semi-
conductors in crossed electric and magnetic fields was first investigated by Aronov.! The
influence of a magnetic field on the Franz—Keldysh effect®* (absorption at frequencies
below the intrinsic absorption edge) was investigated by Aronov and Pikus.*

The weak-field case is always realized in the case of absorption in a bulk uniform
semiconductor. The weakness of the electric field means that the volume bands are not
split into discrete levels (Wannier—Stark quantization5‘7). In this case the effective—mass
approximation or the effective—mass approximation within the two-band scheme is suf-
ficient to calculate absorption.* The magnetic field is also considered to be weak;-and the
Larmor energy is much smaller than the width of the allowed band (the magnetic-field
flux per crystal cell is much smaller than one quantum).

A characteristic feature of the interband light absorption coefficient (f) in weak,
crossed fields is the exponential dependence on the parameter o

I « exp(— a2),

where a=¢El, /hw., w.=eH/c(m,+m;) is the cyclotron frequency, m¥, are the ef-
fective masses of the electron and hole, and I,,=(hc/eH)"? is the magnetic length.
Absorption vanishes in the limit E—c. This limiting behavior is a result of the
effective—mass approximation.

In the present letter we show that in the strong-field limit the absorption coefficient
does not approach zero and it does not have any special smallness in the limit E—o. The
strong-field limit cannot be realistically achieved for a uniform semiconductor, but it can
be easily achieved in semiconductor superlattices (see, for example, Ref. 8 ), where the
width of a miniband () can be made quite small (t<<edE, where d is the period of the
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superlattice). It turns out that in the strong-electric-field limit a magnetic field of any
strength (even when the Larmor energy is of the order of the miniband width) is a small
perturbation.

In the strong-field limit the effective-mass approximation is inadequate, since infor-
mation is required about the spectrum over the entire allowed band. The tight-binding
method is useful for these purposes. We shall study the following model. Let the initial
spectrum of the superlattice be such that the width of the first minibands in the valence
band and the conduction band is less than the energy splitting from the neighboring
minibands. This makes it possible to use the one-band approximation to describe the
spectrum in the minibands. The strong-field limit in this case means that the fields are
strong on the energy scale of a miniband. The phenomena associated with the multiband
nature (magnetic breakdown, interband tunneling) require a separate analysis.

For simplicity we shall study a two-dimensional superlattice (superlattice in two
directions, miniband along both the x and y axes; this fact will be employed below). The
existence of a third coordinate perpendicular to the plane is not fundamental, since the
problem is uniform in this direction. Let each isolated quantum well have one quantum-
size level eg?g for the conduction band and the valence band. Hops between wells are
described by the overlap integrals ¢, , . This quantity determines the width of a miniband
and the sign of the effective mass near the extrema. Let a uniform electric field be
directed along the x axis and the magnetic field directed along the normal to the plane
(z axis). The electric field is taken into account via the shifts of the levels in the wells.
The change in the hopping integral under the action of an electric field is ignored, since
it does not change the results fundamentally. The action of a magnetic field on the wave
function is taken into account by introducing the magnetic-translation operator,” !* whose
action reduces to the following:

. i [eH
Td(//(r)=¢//(r+d)exp(-2- r(—h—c- d)) 1)

The Landau gauge is used for the vector potential: A =H(0,x,0).

The wave function then satisfies the effective Schrodinger equation
(ely+edmE=e) (0,3 + teu[ Yo, (5 +d.y)+ e (x—d.y)

eHdx

. _eHdx 3
+exp i . (x,y+d)+r exp i Yo, (x,y—d)]1=0, (2)

where the coordinates x and y assume discrete values at the sites x=md and y=nd,
where d is the period of the superlattice (assumed to be the same along the x and y axes).

It has been shown'*'S that in the absence of an electric field the features of the
spectrum are determined by the dimensionless parameter a=ed’H/2whc — the number
of magnetic-flux quanta in a unit cell. The magnetic-translation operator affects only the
x coordinate, so that along the y axis it is natural to assume that

e p(md,nd)=exp(ik,nd)A. (m). 3)

The effective Schrodinger equation assumes the form
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Ac,v(m+ 1)+Ac,u(m— 1)+[2 COS(27rma_kyd)+fc,vm]Ac,v(m)=5Ac,u(m)’ (4)

where f.,=edElt.,, a———s—s(c?g/tc,v, and for convenience we set =1. In the ab-
sence of an electric field (f.,=0) the recurrence relations for arbitrary a were investi-
gated numerically in Ref. 15. We were able to show analytically that for small o (weak
magnetic fields) the spectrum consists of a series of equidistant Landau levels. For small
a, treating the index m as a continuous variable, we obtain the Mathieu differential
equation instead of a difference equation (k,=0 — at the extremum of the bands)

1 d’A(2)
7 T (y=4g cos(2)AD)=0, ©
where

m 1 e 1
" (wa)?’ 7‘('2'"2rc,,,)(m>2’ 1= 8 mar? !

— a weak magnetic field. Using the asymptotic representation for the eigenvalues of the
Mathieu equation for large values of the parameter ¢,'¢ we have

y,~—4q+vy2q. ©6)

The spectrum consists of a series of equidistant levels. In the absence of a magnetic field
the spectrum of electrons and holes (k,=0) has the form

e= 8(6?3 +2t,, cos(k,d). )
Near the extrema of the conduction and valence bands k,~0, we have
e=eO+2r, 71, d%2.

The sign of the overlap integrals ¢, , determines the sign of the effective mass of the
carriers, so that for the conduction band ¢, <0 (m¥= 1/t ,d*>0) and for the valence band
1,>0 (m¥=1/t,d><0). The quantity e§,°)= e O+21 — (ef,o)+2tu) plays the role of the
band gap in the absence of external fields.

We obtain for the spectrum of electrons and holes in a weak magnetic field the
expressions

eH
e.~—=2|t |+ gt
c

e
e,~2t,+v .
T Tm¥e

Unfortunately, the energy of the zero-point vibrations is not reproduced because of the
asymptotic character of the expansion.

The spectrum of the system can also be found exactly in the absence of a magnetic
field, since the recurrence relations with @=0 are identical to the recurrence relations for
Bessel functions.'®'” Thus

ac,v,,=a£(,),3+edEv+2tc’v cos(k,d), (8)
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and the eigenfunctions are

Pep{m,n)=exp(ik,dn)t ,_ (Vfc ). )

For what follows it is important that for edE> ¢, the splitting between the levels in the
Wannier—Stark ladder is greater than the width of the initial miniband. In this case a
magnetic field of any strength is a small perturbation. The magnetic field appears in Egs.
(2) and (4) via the phase factors in the hopping integrals, so that the energy scale of the
perturbation from the magnetic field does not exceed the width of the initial allowed band
(¢, ), i.e., the magnetic field modifies the spectrum within the initial miniband (2¢.. ). In
the Wannier—Stark ladder regime a magnetic field can therefore be taken into account by
means of perturbation theory (the magnitude of the perturbation is much smaller than the
distance between the levels). We obtain the following expression for the matrix element
of the perturbation between the states v and N (8):

Veom= 42 teoWev(m,n)e ,\(m,n)cos(2mam—k,d) (10)
m,n

=4t ,J,_\{2 sin(ma)cos[2mav+(v—XN)sin” (cos(wa)) —k,d]}.

Here we used the formula for the summation of Bessel functions.'®

In a strong electric field the complex structure of the spectrum is therefore destroyed
because of the presence of the magnetic field (Hofstadter butterfly’®) and the spectrum
degenerates into an equidistant ladder of levels which is modulated as a function of the
number; here the amplitude of the modulation is small compared to the splitting between
neighboring levels in the ladder without a magnetic field. We obtain

Eepy= s(°)+edEv+ 2t/ o(2 sin(ma))cos(mav—k,d). (1)

For weak fields (a<€1) the correction to the spectrum is linear in the magnetic field

) ed*H
de. =21, sin(k,d) Pt av<l, (12)

The correction to the wave function of the vth state is

V. 1
Otco(mm)=explikdn) 3~ 2s), A( r ) (13)

It is a small term of order ¢, /edE<1.

The light absorption coefficient can be represented in the form [the correction ¢
(13) can be ignored with respect to the parameter 1/f, ,<€1]

1
Hw)= d§2 fdk Jr_ I‘(f

X (t, cos(2maN—k,d)—t, cos(Qman—k,d))]. (14)

)5[m gg—edE(N— ) —2Jo(2 sin( 7))

<0

Here d, is the interband dipole matrix element with the atomic orbitals of the tight-
binding basis, and &, = s(o) (0) is the splitting between the initial quantum-size levels
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in isolated wells (ignoring the hops between the wells) in the conduction and valence
bands (it should not be confused with the band gap taking into account hops in séo)).

In the absence of a magnetic field the absorption coefficient consists of a series of
steps corresponding to transitions between levels in the Wannier—Stark ladder in the
valence band and the conduction band

__c_i_%_ R (_1_) o w—e,~edE(A—p)]60{t2,~[w—e,—edE(A— p)]*}
Hw)= d% Iien feo \/tgv—[w—sg—edE()\—y,)]2
(15)

where 1/f,,=1f.—1f,, t.,,=2(t.—¢,), and 6(x) is the unit step function.

For strong fields E (1/f.,<<1) the asymptotic expansion of the Bessel functions'®
gives

1 1
13} ety w1 b

Transitions occur between the levels originating from the nearest-neighbor quantum
wells in the superlattice. The square-root singularity arises because of the one-
dimensional character of the spectrum in a strong electric field. For transitions which are
vertical in the spatial coordinate (A = u) the singularity occurs at the edges of the allowed
bands. Absorption is absent if the frequency is greater than the width of the allowed
bands plus the initial splitting between the quantum-size levels in the conduction and
valence bands (w>2¢,,+&,).

The following expression is obtained for the absorption coefficient in a magnetic
field:

s

_do (L) Olw—e,—edE(\— p)) 012, ~[w—e,— edE(\— u)]?}
I(w)ﬁ dgt J)\—;L va J?zc:'—[w_'f;g—EdE()\—ﬂ)]z

(16)

ffvm=41(2,(2 sin(7a)){[t, cos(2maN)—1t, cos(2mau)]?

+[t, sin(2mal)—1¢, sin(27wau)]?}.

A magnetic field leads to an effective change in the width of the allowed band. In weak
magnetic fields the frequency shift for transitions between a pair of levels A and u in the
valence and conduction bands is linear in the magnpetic field and is proportional to
«(t,A—t,wyed Hl c.

In summary, the absorption coefficient in strong electric fields (eEd/t. ,a> 1) does
not have any special smallness, in contrast to the weak-field case, in which the effective-
mass approximation is valid. The predicted features of the electronic spectrum and ab-
sorption in strong, crossed, electric and magnetic fields can be directly checked experi-
mentally on semiconductor superlattices.
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Here we studied a two-dimensional lattice. For a three-dimensional lattice the quali-
tative results will remain the same, since motion along the z axis is free. The absorption
coefficient in this case can be expressed in terms of elliptic integrals and the square-root
singularity is replaced by a logarithmic singularity.
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