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Random walks in a disordered medium with a dipole-dipole transport
are studied. It is proved that the long-time asymiptotic behavior is of a
diffusion character and the diffusion coefficient is determined. The
analysis is based on a new, efficient, numerical-modeling method em-
ploying direct calculation of the Fourier transform of the propagator
and periodic continuation of the system without periodic continuation
of the initial condition. © 1995 Anierican Institute of Physics.

1. Dipole transport in the problem of random walk in disordered media (RWDM)
occurs during the migration of localized excitons and spin-polarization transport. The
most detailed measurements have been performed for depolarization of fluorescence'?
and by the methods of time-varying selective laser spectroscopy,’* stimulated four-wave
mixing,’ and B-NMR (Ref. 6). Different analytical*’~"> and numerical®'*!> approaches
have been used for the theoretical analysis. In particular, in Ref. 11 a general method was
developed for calculating the propagator at moderately long times. At present, the most
important and complicated question is that of the long-time asymptotic behavior of the
process. Although the formulation of the diffusion hypothesis“)'13 is now apparently
generally accepted, it has never been proved either theoretically or experimentally. The
experimental results of Refs. 4 and 5, where an attempt was made to measure the diffu-
sion coefficient D, differ substantially. The scatter in the values of D, obtained in differ-
ent theoretical approaches, is even greater (see the discussion in Ref. 13). Here the
agreement between the measurements obtained in Ref. 5 and the calculations in Ref. 12
is an exception.

In the present paper we perform a theoretical analysis of the long-time asymptotic
behavior for the standard RWDM model with dipole transport. We have formulated a new
numerical-modeling method based on the procedure of periodic continuation of the sys-
temn and we investigated with the aid of this method the Fourier transform P(k,t) of the
propagator, which is the observed quantity in experiments on four-wave mixing.’ As a
check, the results were calculated by using two different computer programs and the
method was tested on an asymptotically exactly solvable model of dipole transport.16

The results obtained yield, in particular, a new value for the diffusion coefficient D.
Therefore, the agreement obtained between the values of D in Refs. 5 and 12 is acciden-
tal, and the disagreement between this result and our result is apparently due to the fact
that in Ref. 5 the very important control measurement of the dependence of the results on
the wave vector was not performed (which the authors themselves noted) and the theo-
retical computational method employed in Ref. 12 has only a heuristic and not a math-
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ematical estimate of the rate of convergence and therefore of the accuracy.

The value which we obtained for D falls between the values corresponding to the
experiments of Refs. 4 and 5. This shows that new, more accurate measurements must be
performed.

2. The migration of localized excitations over a system of randomly distributed (in a
regular lattice) impurities is described by the kinetic equation

Pii== 20 (VuiPij= VinPmj)»  Pif{1=0)= 8, )
m

where p;;() is the probability of observing an excitation at the time ¢ at the ith impurity
site, if it was first observed at the site j. In the standard model of dipole transport
= Vorg/ lri—rjl6, where v, is the transition rate corresponding to the minimum dis-
tance ro between the impurities, and r; is the radius vector of the ith impurity. The
arrangement of the impurities is assumed to be uncorrelated and their concentration is
¢<1. In the limit of low concentrations the characteristic time scale is given by the
Forster constant 8= ( 16/9)713(r(3)/ 0)%c?v,, where  is the volume of a unit cell. Para-
metrically, B is identical to the transport rate v;; over an average distance F =roc” 3 In
the numerical modeling we considered a simple cubic lattice with a unit cell of size
ro. We singled out in the lattice a cube with an edge R>r, prescribed at the lattice sites
a pseudorandom configuration of N=c(R/ry)* impurities, and then periodically contin-
ued this configuration [but not the initial condition for Eq. (1)] to the entire infinite
lattice. A similar method of periodic continuation was employed previously in Ref. 17 for

other purposes.

We introduce the quantity

Pk =2 pjm(t)explik(r,—r)]. | @)

The configurational average (p;(k,#)) =P(Kk,?) is the Fourier transform of the propaga-
tor and is the directly observed quantity in four-wave mixing experiments. Combining
Egs. (1) and (2), we find that if r;—r;=Rm, where meZ?, then p;=p;. Therefore, it is
sufficient to solve the finite system of equations

N
p;=—(A(k)p);=— Zl [ij(O)Pi" ij(k)Pj]’ pi(k,r=0)=1, (3)
=
where i and j now enumerate the sites in the periodicity cube, and

W i(k)= Z Vorglrj—r,-—mR] -6 explik(r,—r;,—mR)]. 4)
meZ
3. The finite system (3) for small values of |k| gives the basic information about the
asymptotic behavior of the process at long times. We note that by confining attention to
small values of |k| we substantially speed up the calculations, since for k=0 the initial
vector (3) is the principal eigenvector of the generator A(k=0). In the numerical analy-
sis we study the quantity
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1Y _ _
P(k,t|N)= ¥ ; p;=(0lexp[ — A(k)1]|0), (5)

where (i|0)= 1/ JN is the average over all configurations obtained from a given configu-
ration by changing the “central” site. As N increases, P(k, t|N) approaches P(k,r).
Using the spectral expansion of the Hermitian operator A(k), we find that

N—1
P(k,r11v>=go [ lO)2exp( —a,(K)1);  A(K) p)=a,(K)|p). (6)

The lowest eigenvalue ao(k—0) is unique, and [(0]0)|?=1 + O(k?). Introducing
the projection operators 7=|0)(0| and 7= 1— 1, we obtain

_ - _ 1 B _
ao(k)-—(0|A(k)|0)+(O|A(k)7T mwA(k),O}. )

It thus follows that
ao(K)=D 4k kg~ ok*+ O(k*) = Go(k) +O(k*), 8)

and the coefficient o= (7%/12)crav, is determined completely by the first term in Eq. (7)
and can be calculated, for example, by the Poisson-Ewald method.' It is convenient to
represent the diffusion tensor in the form D,,B=(K,,ﬂ/6)F2,B. Since the system is isotro-
pic, D ,g—D 6,4 and k,5— k845 as N— . To calculate ay(k) we solved the system of
equations (3) numerically, calculated P (k, t|N) and approximated it by using the formula

P(k,t|N)=exp(—ao(k)(t+b/B))+(Fk)*f exp(—a,t), a,=(2@/R)* Dk, (9)

and sought values of N and ¢ for which the Kag> b, f, and k; no longer depended on N,
t, k, and ¢. This procedure is more efficient than direct implementation of Eq. (7).

As a check, the diffusion coefficient was also determined by a different (more
rapidly converging) method which follows from the relation

2 pFAy10p;1 2 |piP = oK) as 1. (10)

4. The proposed method was tested on known, exactly solvable models. In the model
of isotropic random walk (MIRW) the propagator is determined by the equation'®

Pry=—2 [Vt Pry— vk Pyl, Po(1=0)=4,,, (11)
Z

where X, y, and z run through the lattice Z*, v, = v,,=v _, ¢, S v, ox’ <+, {£]} is a
set of independent, positive, identically distributed, random quantities with a sufficient
number of finite inverse moments.

We now consider a periodic system, leaving the quantities £, independent, when x
runs through the sites of a cube V, centered at zero, with edge R, and setting
&vi+ry=E&, for an arbitrary integer vector y.

By analogy with Eq. (2), we introduce the quantity
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puk,)=2, P (Dexplik(x—y)], (12)
:

for which p,,g,=p, and which satisfies the finite system of equations

p.s%A(k)ép),\:—Zv[Wz_x-(0>§xpx—W,\-z(k>§zpz], p(k,r=0)=1, (13)

where x and z now lie inside the periodicity cube, and

W (k)= >, v, x+mr €xplik(z—x—mR)]. (14)

meZ

In the MIRW the quantity P(k, t|N) [see Eq. (5)] corresponds to

p(k,1)=(0| exp(—Aé&r) —KEQ |0)= (0] \/% exp(— VEAED) \/%IO), (15)

1 1 1 1
x0)=—; —==2 —; N=R’.
(xi0) N ngv &y

The minimum eigenvalue of the operator \/EA\/E is determined by an expression
identical to Eq. (7), where <x|6) =Ko/ (EN), with the substitution A— \/EA \/E We note
that the second term in Eq. (7) is now a fourth-order term in k which does not contribute
to the diffusion coefficient. From the first term we find

D=koDqy, Do=(1/6)>, x*vy. (16)
X

Here D is a diffusion coefficient on a regular lattice. This answer for large N agrees very
well with the expression obtained in Ref. 16 for the diffusion coefficient:

1 1
D:KDO; -K—: 'é,g .

where (...) is an ensemble average. This means that in the present model the fimits
N-—o and r—c are interchangeable and that the relative accuracy in determining D
from Eq. (16) is of the order of 1/ \/ﬁ . The interchangeability of these limits can also be
proved similarly for all models considered in Ref. 18. The numerical algorithm for
solving the systems (3) and (13) was checked for MIRW with £ distributed uniformly on
the interval (1, 6), and (1/£)~10/(£). As a result, the value obtained for the diffusion
coefficient agreed with Eq. (16) within 107°,

5. The proposed method models adequately the disordered system (1) as long as the
diffusion radius r;;= V6D satisfies the condition

ep=(2rp/R)*=4xB1IN?3<1. (17)
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In the opposite limit, when £,> 1, we obtain the model of transport in a crystal with a
complex large unit cell that contains N atoms. For small ¢<<0.1 and k<0.1-27/R the
value of « stabilizes within 8% near «=0.305 for all Bt=10 and N= 150 and changes
monotonically as ¢ and N increase or k and ¢ decrease. For the highest value employed
N=~2000 the criterion (17) holds up to B, ~130; for c=0.05 we have the value
xk=0.301(4), and a,~(2%/R)2D. It thus follows that in our main problem (1) and (3),
just as in the exactly solvable models,'® the limits are interchangeable

lim lim D(¢,N)= lim lim D(¢,N)=D

1—0 N—s N—ow t—»

and the long-term asymptotic behavior in the problem under study is diffusion.

For comparison, we point out that in the GAF theory® kgap=0.315. The phenom-
enological theory of Refs. 10 and 13 for calculating D employs the Scher~Lax formula’
and gives k= kg =0.373. The modification given in Refs. 12 and 13 of the GAF theory
(developed, specifically, for extending the theory to one- and two-dimensional systems)
gives k=kp=0.186, and in Ref. 19 the value k= x;;=0.49 was obtained. The experi-
mental data of Ref.4 are consistent with the value = «g . The result presented in Ref.
5 corresponds to k= kggy=0.147(23), which gives, when the term ok> from Eq. (8) is
taken into account correctly, the value xggm=0.168(26) (Ref. 12). Here we ignore the
correc;;ilc;n for the dipole anisotropy of the transition rates, which amounts to about
10%."~

We note that the long-term asymptotic behavior for P(k,t) starts for much lower
values of B¢ than for the autocorrelation function { Py(#)). This property is realized in all
known methods for performing analytical calculations*?° and in numerical modeling.
This makes it possible to limit the analysis to comparatively small values, N=500, to
obtain results with adequate accuracy and is one of the most important advantages of our
method.
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