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An expression is presented for Leggett—Takagi relaxation with arbitrary
w7, which makes it possible to include the entire temperature range
for *He-B. © 1995 American Institute of Physics.

In the present paper we shall examine the following problem. It is known that the
relaxation of the Brinkman—Smith mode in the B phase of *He in the hydrodynamic
region is weak to the extent that 7 {(quasiparticle relaxation time) is small, and that in the
collisionless region it is also weak to the extent that 7~ ! is small. In the hydrodynamic
region there exists an expression for the relaxation time of the Brinkman—Smith mode
that is valid in the region! @, 7<1. This condition corresponds to the temperature range
near the superconducting transition temperature. At the same time, an expression has
been derived for the Brinkman—Smith relaxation mode in the collisionless region, in
which the condition @, 7> 1 is satisfied.? This is the applicability condition in the tem-
perature region near zero Kelvin. In the more interesting intermediate temperature region,
in which the condition w; 7~ 1 is satisfied, no formulas have been derived for the damp-
ing of the precession of nonlinear NMR. In this letter our goal is to bridge this gap.

In general, the problem of calculating the relaxation time of nonlinear NMR on the
basis of the nonlinear kinetic equation is extremely complicated. In our case, however,
there is a substantial simplification: For tilt angles 8<<B; (Leggett’s angle) Larmor
precession occurs in *He-B without a shift of the precession frequency. The spin of the
quasiparticles rotates coherently together with the spin of the condensate, which is not
affected in this case by the additional dipole forces. In the region 8<<g; the solution of
the kinetic equation will therefore be the equilibrium distribution function. Dipole forces
which drive the condensate spin away from the quasiparticle spin appear at angles 8 that
exceed B, by a small amount, but these forces are weak to the extent that AB= 8- B, is
small. For this reason, the nonequilibrium correction to the distribution function is also
small to the extent that A 8= B~ B; is small. To find this nonequilibrium correction and
obtain an expression for the effective relaxation of the Brinkman—Smith mode, we start
from a combined system of three equations:** the hydrodynamic equation for the total
spin

S=ySXH+Ry, (1)

the equation of motion of the order parameter
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d(p)=[d(p), {yﬂ—f( 4XZOS+ ESP)H (2)

and the nonlinear kinetic equation

J
5uk(rt)+(VkEk )5/Lk(rl‘)+(5,uk(l'l)><(5Ek(l't) I(6vk), (3)
d¢ |
6,uk(r )= 51/k(r ty— 6E Q= — tan E,BEk,

OB =kA;+ gkx ( 1~ é)dk[d,{(k A~-X)], X=V-QO-fsS.

Equations (1) and (3) are, respectively, the hydrodynamic equation for the total spin
and the kinetic equation for the quasiparticles. They are always valid. Equation (2) was
derived in Ref.4 for the motion of the order parameter under certain assumptions. One of
the assumptions for which Eq. (2) is valid is to study almost-periodic solutions, when the
effective relaxation time of these solutions is larger than the reciprocal of the frequency.
In this case Eq. (5.34) in Ref. 4 can be substituted into Eq. (5.33) which yields Eq. (5.35)
or, in our case, Eq. (2). In our case, as follows from Eq. (15), 8,3/ w; <1, and the case
which was considered by us prevails.

Equation (3) was written in a rotating coordinate system. In this system all gradients
and derivatives with respect to the time and the external magnetic field are as follows:

i a
AaB= - ;;UA l(a9B’7)VU(avﬂ’7)’ VaBZ —iU_l(a,,B,Y)EU( aSB’Y)7

1 1 1
QuﬂzU~1(a,,8,y)EwLaU(a,B,y), A= 2A)\0'aﬂ, Vap= 2V)\0',1B, 4)

1
Qaﬁ:EQ)\a’i‘,ﬁ (A=x,y,2).

We seek the solution of the combined system of kinetic and hydrodynamic equations in
the form

- do -
5Vk:-¢E OSE+ 5/1’1: ’

where 6,42,( is the nonequilibrium correction to the distribution function. As will be seen
from the solution, it is proportional to the first power of the deviation from Leggett’s
angle. We can seek the solution of the system of hydrodynamic equations as a functional
of 88 (deviation from Leggett’s angle) and of | S| (nonequilibrium correction to the
distribution function). The system (1), (2) will then be independent of Eq. (3) and we
obtain by the method described in Refs. 1 and 2 the following expression for the preces-
sion frequency a:
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+0(|8p|38). (5)

The second term in Eq. (5) originates from the equilibrium quasiparticle distribution
function and contains a term linear in 3. The last term contains the product of two small
quantities | Su| 88, which, as will be seen from the solution, is a quadratic function of
8.

We now switch to the kinetic equation (3). We discard all terms which depend on

gradients, since we are interested in the uniform precession. We seek the solution of the
kinetic equation (3) in the form

- 4 - -
apkngi;amam, w=w,+ 8o | 51,

where Sw(|6g]) is the correction, which depends on |84/, to the Larmor precession
frequency. We know the exact nonlinear solution of the kinetic equation

- @
ka=6—;26E, W=y, (6

which is simply the Larmor precession. Moreover, as shown in Ref. 4, there exists a
simple relation between the derivatives of the order parameter and the magnetization of
the system:

S=x(—X), @)

where y is the susceptibility of >He-B. The vector SE can be expressed in terms of
X,>* and the latter vector, in turn, can be expressed in terms of S:

_& _éz) _&S _éfg) ( _S_)
SE= Ekx+(1 F4@0)=g 4| 1= fala]. (®)

Linearizing Eq. (3) with respect to the solution (6), we obtain for small 6/2,( and
S the equation

o1y . L (&S £ S
(o o i £ 31 ool ) ©
+5wq0,i[§—k-;+ 1-§)d(d§)]=0.

k k

Here the vector s is equal in magnitude to the vector S and lies in a plane perpen-
dicular to S. Equation (9) expresses the obvious physical result that the nonequilibrium
correction 6/2 appears only when the precession frequency deviates from the Larmor
frequency. Equation (9) can be written in both the Larmor coordinate system and the
proper coordinate system, since the transformation from one to the other reduces to
adding a term of order de| S

, which can clearly be ignored. The proper coordinate
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system, where the vectors S and s are stationary, is now more useful to us. From the
solution of the hydrodynamic equations (5) we have the following expression for dw in
our case:

16 Q2

N

1
1 +cosB).

@

If we would take into account the last term in Eq. (5), we would obtain a term on the
order of (8f)%, which would exceed the accuracy of our analysis. After a u—uv trans-
formation, the magnetization of the nonequilibrium part of the quasiparticles will be

88=> 5sk:; [ & S+
k

&x -
—- 1——|d(dé, . 10
E, E, (ddper) (10)
Substituting into this expression the solution of the kinetic equation (9), using Eq. (5),
and taking into acount that |S|=|s|=w,, we obtain the following expression for the
modulus of the nonequilibrium magnetization:

JU L 0? L,
Sk= IS(P"T Y|4 cosf3
(iwt+1)? —kf+ —Tdf ——kf(iw'r+l)w'r+ —fd?(w'r)2
E; E Ej Ej
X > 5 . (11)

(iot+1)

£ A
(io1+ 1)+ 2 (01)*+ dX(wr)’
k k

The dissipative function is given by the formula®*
W= 68 1. (12)

The total energy of the system is given by expression (4.14) from Ref. 4. The Larmor
term (SwL~wi5,B) and all subsequent terms in expression (4.14) from Ref. 4 make a
contribution linear in J8. However, their magnitudes are of the order of
(S8~ w, (Q%/ w;) 88~ Q?58), which is small compared to the Larmor frequency. We
can therefore write

15
E=w,S; sin B=E,+ \/1—6w§5ﬁ. (13)
Using the expression
(dldt)E=—W, (14)
we thus obtain the following expression for the relaxation rate:

15\ V20 Qf
= — —F(wT), (15)
X o

16

where
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where f(T) is Yosida’s function.’ A plot of 7F (wT) is shown in Fig. 1. This is the main
result of our study. We employed the values w;=2-460 kHz and TO(TC)T3=0.3
us-mK2. As the temperature is lowered, in the hydrodynamic region first we see a
plateau, which stems from the fact that 7~ exp(A/T), x,~ exp(— A/T), and the expo-
nential in the numerator in Eq. (15) cancels out. Next, a further lowering of the tempera-
ture brings into play the function F(w7), which leads to the dependence
F(oT)~(w,7) 2, and the relaxation rate decreases exponentially. In agreement with the
preceding studies,? in hydrodynamics we have for the Brinkman—Smith relaxation mode
Ter~ (@3/7Q%) and in the collisionless region we have Tog~ (Twp/Q%).
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