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It is shown that the temperature of a recombining, statistically degen-
erate Fermi ensemble increases. © 1995 American Institute of Physics.

Radiative recombination of particles is encountered in a number of problems. Ex-
amples of such processes are interband recombination of electrons and holes in semicon-
ductors or annihilation in a system consisting of particles and antiparticles. In this con-
nection, there arises the question of the behavior of the temperature of the recombining
“annihilating” ensemble of particles. At first glance, one would think that the temperature
of the ensemble should decrease as photons are emitted.” However, it can be shown that
the answer to this question is not so trivial and requires a more careful analysis: One must
keep in mind the fact that in the process of recombination not only are photons emitted,
but the density of the particles in the ensemble decreases.

In any sufficiently complicated system recombination is accompanied by other pro-
cesses. In addition, recombination itself can be a complex process. However, since we
desire to understand the role of the decrease in the particle density, we shall restrict the
analysis to the use of a very simple model. We shall investigate an isolated ensemble of
Fermi particles, from which particles “vanish’’ at a rate that depends on their energy. The
energy of each particle, E=E,+ €, consists of the self-energy E, and the energy € of the
thermal motion. We assume that the thermal energy of a particle is much smaller than its
self-energy, so that in the calculations performed below we can employ a series expan-
sion in powers of €/E,.

It is obvious that two equations are required to describe the process under consid-
eration: one equation for the particle concentration and another equation for the energy of
the ensemble. We shall employ the following equation for the particle concentration n:
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- f “w(E)p(f(eu.T)de; n(p.T)= f p(f(epT)de, (1)
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where w(E) is the probability of spontaneous recombination of particles with energy E,
f(€,,T) is the distribution function of the particles, T is the temperature, u is the Fermi
potential of the ensemble, and p(e) is the density of the energy states. Introducing the
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temperature of the recombining ensemble, we assume that a thermal equilibrium is es-
tablished in the ensemble much more quickly than the particles recombine.

The equation for the energy density U(u,T) of the ensemble can be written from the
law of conservation of energy. Each recombining particle carries off energy E. Therefore,

dU(u,T w
—_(dl;_):_jo w(ENE,+€)p(€)f(e,n,T)de;
U(p,T)= f:(Eg-l-e)p(e)f(e,T,,u)de. 2

Now we can write an equation for the change in the temperature of the ensemble; this
equation will ultimately answer the question posed at the beginning of this paper. Using
the fact that

dU(,T) _ 3V dn  dU dT
dt  on dt  oT dt’
we can rewrite Eq. (2) in the form

dr [oU\! U
— =57 L W(E) 5~ Eg—¢€|p(e)f(e,p,T)de. 3)

To expand Eq. (3), we must find an explicit expression for U(u,T) and n(g,T) in terms
of the Fermi potential and the temperature, and we must assign the function w(E). In the
case where the energy € is a quadratic function of the momentum we have p(e)
= €2, We assume that the state of the particles is statistically degenerate, and that the
distribution function is the Fermi function. Then U(u,T) and n(u,T) can be calculated
by the method recommended in Ref. 1. Up to second-order terms in the temperature we

obtain
n(u,T)=(”—Eg)3/2[1+l(—ﬁT——)2 , a=(6—"i)mﬁ—2, 4)
" 2\2(u—E,) g 2m
3 wkT \?
U(/'L’T)zn[Eg+g(’u'_Eg)[1+2(2—(;L—_E;)_) ”, )

where g is the statistical weight, and m is the particle mass. It is obvious that in order for
Egs. (4) and (5) to be valid, the quantity kT/(u—E,) must be small.

Next, we assume that

E LIE) 6
where 7, does not depend on E. This assumption is based on the fact that the probability
for spontaneous radiative recombination is proportional to the squared matrix element of
the dipole moment and the cubed frequency of the emitted photon.? We therefore have
g=3 if the matrix element of the dipole moment is essentially independent of the fre-
quency. In general, g # 3.
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Relations (4)—(6) make it possible to expand Eq. (3). In its general form this equa-
tion is complicated. We shall write it for a temperature close to zero, ignoring terms of
order (u—E,)/E, and higher:

de* 1

o (W-E)% 6=—kT ™)
dt - T, (lu’ g) s - ) .

It follows from this equation that the time derivative of the temperature is strongly
positive. A recombination thus leads to heating of a degenerate Fermi ensemble.

We now consider a nondegenerate (Boltzmann) ensemble, where

U=n

3
Eg+ EkT). (8)

In this case Eq. (3) (up to terms of higher order in KT/E,) reduces to the equation

(kT)?
—

d
7D =—q ©

8

We see that the change in temperature of a nondegenerate ensemble depends strongly on
the sign of q. The temperature decreases if ¢>0, increases if ¢<<0, and remains un-
changed if ¢ =0. This behavior has a simple interpretation. For g0 the hotter particles
are removed at a higher rate than the colder particles, so that the ensemble is cooled. For
¢g<0 the situation is reversed. At ¢=0, the rate of removal of the particles does not
depend on the energy of the particles and the temperature of the ensemble remains
unchanged. As we can see, in the degenerate case a recombining ensemble of fermions is
heated, irrespective of the value of q. The reason for this behavior of an ensemble is that
a degenerate Fermi ensemble consists mainly of “cold” particles, whose energy is lower
than the Fermi potential.

Equations (7) and (9) were derived in the limiting cases of degenerate and Boltz-
mann statistics. In general, the dynamical behavior of the temperature is expected to be
complex. Only a numerical analysis, a subject for a special study elsewhere, can be
carried out in this case.

When a semiconductor is exposed to a short (picosecond or femtosecond) radiation
pulse, such that the energy of the photons exceeds the band gap, an ensemble of carriers
whose temperature may be different from the lattice temperature is produced. Recombi-
nation heating (cooling) plays a large role in the process establishing a stationary tem-
perature of the ensemble. It must therefore be taken into account when analyzing the
nonequilibrium temperature dynamics in different semiconductor devices.>* In particular,
it is important to take this effect into account in order to understand the recovery of the
gain in a semiconductor amplifier after a short radiation pulse has passed through it?
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Qur personal experience in scientific discussions shows that this is the most commonly held viewpoint.
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