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An exact analytical criterion for the instability of discrete soliton solu-
tions of the two-dimensional discrete nonlinear Schrodinger equation is
presented. Two-dimensional discrete oscillating breather-like solutions
are also examined. © 1995 American Institute of Physics.

Nonlinear discrete models have been studied in a variety of physical problems such
as optical pulse propagation in arrays of coupled optical waveguides,'™* proton dynamics
in hydrogen-bonded chains, the Davydov and Holstein mechanisms for the transport of
excitation energy in biophysical systems, Scheibe aggregates,” the Hubbard model, and
electrical 1attices,6'7 DNA dynamics,s_lo and molecular vibrations in benzene chains, for
example, and in certain molecular crystals.'' Many common features of different discrete
nonlinear models can be understood on the basis of the discrete nonlinear Schrodinger
equation (DNLSE).'?"!> Two-dimensional localized discrete solutions of the DNLSE
have been investigated in Ref. 15. The central question for the physical relevance of
discrete solitons is their stability. Soliton stability plays a key role in the problem of the
formation of large-amplitude states in multi-dimensional discrete nonlinear systems. The
stability problem in the continuum limit of the DNLSE (two-dimensional NLSE) was
solved in Ref. 16. In this paper we present an exact analytical criterion for discrete soliton
instability in the two-dimensional DNLSE.

The two-dimensional discrete DNLSE is written

; aq’n,m
at

+\Ijn+ l,m+\1,n* l,m+\Pn,m+ 1 +\Pn,m— 1 4q}n,m+2|wn,m|2wn,m=0' (l)

We have considered two types of boundary conditions on Eq. (1): (i) periodic boundary
conditions W_y , =¥y W, =¥, and (ii) |¥, ,|—0 for Vn?+mZ—c0. Here
2N and 2M are the numbers of the modes in the n and m directions, respectively.

Equation (1) can be written in the Hamiltonian form

. (?\l, n,m S6H
1
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n.m
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with Hamiltonian
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H:E I‘Pn,m—q’rrl,mlz+2 |\Pn,m_\l,n,m—ll2_2 I\Pn,m|4=11+12—_13‘ (3)

nm n,m n,n

The integral P=3|¥, | is an additional conserved quantity.

Let us consider steady-state solutions, having the time dependence
¥, ,=F, . exp(i\*t). The shape of F, ,, is then determined by

n,m

Fn+ l,m+Fn— l,m+Fn,m+l+Fn.m- 17 (4+ )\Z)Fn,m—*— 2|Fn,m‘2Fn,m:O' (4)
Soliton solutions correspond to extrema of H for fixed P, since Eq. (4) can be written as
S(H + \?P)=0. Soliton solutions of Eq. (4) have been studied in Ref. 15.

In this letter we consider only the instability side of the stability problem. Details of
a comprehensive investigation dealing with the stable solitons will be published else-
where.

Linearizing Eq. (1) with respect to the soliton solution [¥, .
=(Fpmt fumtignmexp(i A2t)] and decomposing the perturbations into real and imagi-
nary parts, we obtain equations for the evolution of the real functions f, ,, and g, ,,:

_ dgn,m

=== furtm = Fa-tm = Fami1 = Fam- 1 HAFN = 6F L o fo =H _frm
(5)
and
dfpm
2= "8t tm ™ 8n 1~ Bnm+ 1~ &nm=1F (4N = 2F 8= H 8-
6

The stability of a stationary solution F,, ,, is determined by the properties of the operators
H, and H _. Equations (5) and (6) can be rewritten in the form

7,
- 81’;,"' =H+H4fn,m . (7)

We will use the notations (f,g)=Z, ,.f, n8x.m and f without indices for f, ,, . The
central point of this letter is the following instability theorem.

Let f be a solution of Eq. (7), where H, and H _ are self-adjoint (symmetric)
operators with the following properties:

() (f,H . f)=0and (f,H, f)=0only if f=0o0r f=F, ,;
(2) there exists some f for which (f,H_f)<0 under the constraint (f,F)=0. Then
there exists some f satisfying (f,H, f)=A exp(2y) with constant A and

—(LH-f)
VSR~ G ®

A sketch of the proof is as follows. Using the properties of the operator H ., Eq. (7)
can be rewritten [for distribution f satisfying (f,F)=0] in the form
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PH fun
_—(;I‘TL: _H—fn,m' (9)

Multiplying Eq. (9) by d,f and summing over n and m, we obtain an integral of
motion for the evolution equation (9):

(fi,H:'f)+(f,H_f)=C=const. (10)

Using assumption (2) we can consider solutions to Eq. (9) with C=0. Suppose that
at r=0 the function f satisfies (f,H _f)<0, with the additional requirement (f,,F)=0.
Let f(1)],=90=fo-fili=0= ¥fy. where ¥>0 is defined by

o JoH-fo)

T o o)

It is easy to check that C=0 for such a solution. Multiplying Eq. (9) by f, summing, and
taking into account Eq. (10), after some straightforward algebra we obtain

P _ A(f L HD'N? [aAHUHT
a2 FH D=4 )= — o= = ey (11)
Integration of this inequality yields
FFHT) o HAHT'
=2 y= (12)

(f.H,'f) FHTH |

Thus, (f,H7'H=(fo,H7 ' fo)exp(27t), and the perturbation of the ground state F,
grows in time. A maximum of the growth rate ¥ of the instability is given by the vy
defined in Eq. (8).

Obviously, the instability is triggered by the existence of a negative eigenvalue of
the operator H_ under the additional constraint (f,F)=0. Now we prove that in the
DNLSE the operators H _ and H , satisfy all the requirements of the theorem, and insta-
bility of the ground state takes place when

3 3
— (F,F)= —5 P<0.
I\ (F.F) IN? 0

Note that H . F, ,,=0 and

oF
H_ (9):2’" = _Fn,m .

First, we prove that the operator H . is non-negative. Indeed, H , can be written in a form

Fn m+l+Fn m—1
(H+f)n:"fn+l,m_fN*l,m——fn,m+l~f/1,711*l+ F fn,m

n,h

Fn+ l.m+Fn— {,m

F fn,m . (|3)

nm

Thus,
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PowerP: case 32x32
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FIG. 1. Integral P versus A for N=M=32. Solitons with dP/d\<{0 are unstable.
Fn—l,m Fn,m 2 Fn,m—l
(f’H+f)=2 F fn,m— F fn—-l,m + —F—_fn,m
n.m n,m n—1m nm

=0.

2
[ Fum ; )
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To demonstrate that there exists some f~ satisfying (f,F )=0 and (f JH_ f)<0, let us
consider s =dF/\*~ aF , where

1 d :
=57 n(F,F).

The constraint (s,F)=0 is satisfied by construction of s. Using the obvious equalities

aFll,”l
Ho—==Fun

and
H_F=—4F3,

we obtain
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FIG. 2. Hamiltonian H as a function of P. The cuspidal edge corresponds to a degenerate critical point.

oF oF 5 W 2
(s,H_s)=—|F o2 ~2a| F.H_—5 ozt (F,H_F)=~(F,F?) Wln(F,F)

+ —— (F,F). (14)

From this, one can see that a sufficient criterion for instability can be formulated as
d
(F F)=-— P<0.

Figure 1 shows the dependence of P on the spectral parameter \. P is calculated for a
finite number of modes. P(\) has been calculated!” by a variational approach for infinite
chains (the one-dimensional case with higher-order nonlinearity has been considered in
Ref. 18). In this case, the left wing of the curve depicted in Fig. | degenerates into a
point, and solitons are unstable for small . As was found previously,' an important new
feature that is introduced by the discreteness is a coexistence of stable solitons and
unstable states. The latter behavior is absent in the continuum limit of Eq. (1}). We would
like to point out that, in contrast to the continuum limit, moving solutions of Eq. (1)
cannot be obtained by Gallilean transformation. Very narrow discrete states cannot move,
but solitons close to the continuum limit can. Therefore, the stability of moving solitons
is an open question, which we plan to consider in a forthcoming publication.

Our instability criterion agrees with predictions of the *“catastrophe” theory. Figure
2 shows a plot of H(P) numerically calculated soliton solutions. The occurrence of a
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FIG. 3. Evolution of an initial distribution with all the energy in only one mode. The development into a
narrow, breather-like solution can be described by Eqs. (15) and (16).

Whitney gather (Whitney surface) corresponds to the existence of unstable solitons with
(d/d\NHP<O. They correspond to a saddle point of the Hamiltonian for fixed P. The
cuspidal edge corresponds to a degenerate critical point (see, e.g., the review'?).

The nonlinear development of an unstable discrete soliton leads to the formation of
breather-like structures.'® This type of the behavior is typical for rather general initial
conditions.

One type of breather-like solutions can be described by a perturbation method,
namely, very narrow breathing states. Let us assume that practically all the energy is
localized in a few modes arranged in a symmetrical way with W >{W, .|, (¥, o We
mark the central mode by Wy=W¥,, Due to the symmetry, we can write also
V. 10=Wo+;="V,. The equation for central mode is approximately

v, ,

and for the nearest neighbors we obtain

i7+\1’0—4\1',+2|\1/1|2‘[',=0. (16)

In the second equation we neglect small corrections due the influence of other
(small-amplitude) neighbors. There are two conserved quantities for Egs. (15) and (16),
namely P=|W,>+4|W|* and H=4[¥y—W [>+ 12]¥ |*~|We|*— 4P |*. This means that
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this system of equations is integrable. The exact solution can be expressed in terms of
elliptic functions. Introducing Z=|W|>*—4|¥,|?, we can easily rewrite Egs. (15) and (16)
in the form

P+Z P-Z
z,,:—162—4(——2~— T)[H—4P+

8

+7\? P—Z)2 _oU(2)
__—>+ ( T oz

(17)

The latter is equivalent to an equation for a particle moving in the potential U(Z). This
equation may be integrated once:

1, b, P+z\*> [P~Z\? P+Zz\?
EZ,+U(Z)=§Z,+822+4(H—4P) 5] T4 3 +2|| ——

T i
8

212
] =E. (18)

Because we are mainly interested in the self-trapped states, consider as an initial condi-
tion a distribution for which at r=0 all energy is concentrated in the central mode,
Z=P,Z,=0, such that H=4P — P2, In this case, the energy is E=U(P)=8P>—=2P* A
solution can be found in terms of elliptic functions. A typical solution of Eq. (1) evolving
into a narrow breather-like state is plotted in Fig. 3. We would like to note that the narrow
states can be formed from initially broad distributions through either a quasi-collapse
mechanism'> or collisions of broad solitons,

In conclusion, we have obtained an exact analytical criterion for the instability of
discrete solitons in the two-dimensional discrete nonlinear Schrodinger equation. We
have examined discrete, narrow, breather-like solutions.
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