Radiative mechanism of lepton bound-state production
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The radiative mechanism of lepton bound-state formation is investi-
gated. It results in real photon emission and bound-state production in a
free lepton interaction. The cross sections for the corresponding pro-
cesses are derived, and some figures given for the case of positronium
formation in free electron—positron collisions. © 1995 American In-
stitute of Physics.

Various bound states of oppositely charged leptons may be produced as a result of
the electromagnetic interaction. The same interaction leads to the formation of bound
states of leptons with a proton or antiproton. Since the theory of all these states is based
on the Coulomb interaction, it may be constructed by the same method.

We shall demonstrate the theory of the formation of such states first of all for the
example of positronium. Note that the quantum states and decay mechanisms of positro-
nium are well known in theory.!?> Moreover, the mechanism of the radiationless capture
of the positron by an atomic electron is well investigated (see Refs. 3—6 and references
therein). Meanwhile there is another mechanism of positronium formation, namely the
mechanism of radiative capture. It describes the formation of a positrionium atom in an
electron—positron collision with the resulting emission of a real photon. In this case both
the initial particles (electron and positron) are free. This mechanism is in essence analo-
gous to the radiative capture of a proton by a neutron (first investigated by Fermi’), which
results in real photon emission and deuteron production. The study of this mechanism is
of great interest, especially in connection with the investigation of electron—positron
plasma properties.®

The theoretical description of the radiative capture is straightforward, as it is based
on the general methods of quantum-electrodynamics perturbation theory. We deal here
with the radiative transition of particles from the free state to the bound one. Therefore,
this mechanism may be regarded as a peculiar inverse photoeffect. It may be used for
investigating the formation of the different bound states. In this paper we consider the
mechanism of the radiative capture of leptons with arbitrary masses which results in real
photon radiation and bound-state formation.

In Section 1 we give the formulas for corresponding matrix elements and cross
sections, and in Section 2 the case of positronium formation is investigated.

1. In this section we consider the transition of a system containing two oppositely
charged free particles into the bound state. This transition must be accompanied by the
emission of a real photon. For the sake of definiteness we shall speak about the transition
of an electron and a muon to muonium (but the all derived formulas can be applied to any
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radiative transition process of two oppositely charged particles interacting by the Cou-
lomb law):

w(py)te (p)—y()+(uTe ) (p), M
where corresponding 4-momenta are indicated in the brackets.

The differential probability of the radiative transition (1) per unit volume per unit
time may be written as
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where w is the energy and d() is the solid angle element of the photon. The reduced
matrix element in Eq. (2) will be defined as
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where r is the radius vector of the relative motion, u(m) is the muon (electron) mass,
k; = uk/(u + m), k, = mk/(x + m), and V=4/9r. Wave functions ¥;(r) and ¥ ()
describe the relative motion of the electron and muon in the initial and final states,
respectively. The photon energy w is related to the initial electron momentum p_ = p and
the binding energy of the muonium by
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In the problem under consideration the wave functions ¥; and ¥, must be eigen-
functions of the same Hamiltonian. Since W is the bound-state wave function, it is
obvious that the influence of the interaction on the wave function must be taken into
account in the initial state, too. This means that ¥;(r) has the structure of the wave
function of the continuous spectrum of the charged particle in the Coulomb field, and this
ensures the orthogonality of W;(r) and W (r). In the process (1) the free electron and
muon exist only in the initial state, and therefore the function W¥;(r) at large r must have
the form of a superposition of the plane wave and the outgoing spherical wave. A func-
tion with this asymptotic form is’

Wi(r)=exp(wl/2)T (1 -i)FLig,1,i(pr—pr)]e™=¥(p,r), (5)

where { = amu/p(m + p), a=1/137 is the fine structure constant, and F is the hyper-
geometric function. Note that the function W(p,r) is normalized in the same way as the
plane wave

j V*(p,r)W(p',r)d’r=(2m) 8(p—p’).

We take the ground-state wave function of the muonium as

3
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where 1/ is the muonium radius.
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Using wave functions (5) and (6) and the Gauss theorem we obtain
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where
N=vn3/mexp(wli)T(1-if).
The integral in Eq. (7) can be evaluated with the help of the formula'®
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It is easy to show that

(K+(p—ip)2 ¢  [k3+(p—ip)* 1%

M=i(1-i{)N8m(a —7 + —7|. (8)
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When writing the last formula we took into account that ak,=ak,=0.
The square of the matrix element will be defined as
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It follows from (4) that the photon energy w<€p if the kinetic energy of relative motion
of the initial particles is greater than or of the same order as the mucnium binding energy.
Therefore the expression for A can be expanded in this limited case as
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where @ is the angle between vectors p and k.

If the momentum of relative motion of the initial particles p <€ 7, the corresponding
expression will be given by the formula
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When writing (11) we took into account that in this limiting case the photon energy is of
the order of the muonium binding energy: w=A~an<n.

The differential probability (2) defines the differential cross section do = dw/v,,
where u, = p(m + p)/mpu is the relative velocity of the electron and muon in the initial
state. (We take the particle densities equal to unity).

Thus, summing over photon polarizations, we can write the differential cross section
of process (1) in the case p = 7 as follows [arccot=cot™']:
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If the initial particles have equal masses, u = m (as in the case of radiative transition of
an electron and a positron to positronium), the second term in the brackets is absent.

The angular integration of the right-hand side of Eq. (12) gives the following ex-
pression for the total cross section for radiative capture of the electron by the muon:
210,".2(0 {2 3 e—4arctan{ 4w2[5(u—m)2+m,u,(l—{2)]
1+ (1—-e7*™) 5pr(1+¢%*

= +u)*+
o 3pm2u2 (m+u)

(12)
Formula (13) is valid for the cross section for radiative capture of oppositely charged
particles with arbitrary masses which interact by the Coulomb law. It applies to the
process of positronium formation in the collision of a free electron and positron as well
as to muonium formation and to the capture of an electron, muon, or 7-lepton by a proton.

2. In the case of the radiative transition of an electron and a positron to positronium
we have
w*(1-1%)
Sp*

o= 1+ , =7, (13)
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and the photon energy is determined from the energy conservation law:
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TABLE 1. Total cross section for positronium formation.

p (keV/c) o (cm?) p (keV/c) o (cmz)

1 3.92-107% 21.5 434-107%
2.15 52.1072 46.4 1.08-107%
4.46 3.69-1073 100 2.41-107%
10 1.48-107%

w+ o dm=pYm+ a’*m/4.

This formula is valid if <1.
If the relative momentum of the initial particles is very small, and £ >1, then the
differential cross section for positronium formation has the following form:
2p*+12w? cos® O
3p*

277 2aPe™?

o= =7 sin’

0 1-

Jd cos ©. (14)

The angular integration of (14) gives the total cross section

2971'2a3e_4[ 10p%+ 1207
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We see that in the case of small initial electron momenta the cross section is pro-
portional to p~2, in contrast to the cross section for slow neutron capture by a proton,
which in this case behaves as p~!. This is a consequence of the long-range Coulomb
interaction as compared with the short-range strong interaction.

Note that the total cross section o for positronium formation was derived without
taking the particle spins into account. Consequently, in order to obtain singlet positro-
nium production we must multiply it by 1/4. In the case of triplet positronium we have to
sum over spin states of the positronium, and this gives a trebled value of the cross
section:

1 3
N=_ [
oli=g0, 0 =70

Table I lists the total cross sections calculated according to formula (14) for the
radiative transition of an electron and positron to positronium at p values ranging be-
tween 1 keV/c and 100 keV/c.

The cross section o increases and reaches very large values as the energy of the
initial particles decreases. In consequence, the process considered should be taken into
account when investigating the properties of electron—positron plasmas and the low-
energy annihilation of electrons and positrons into photons.
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