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The example of the electron liquid in a polar semiconductor with a large number of
electron waves (v 1) is used to show that such an electron liquid is
superconducting at densities # > n,, . The effective electron-electron interaction
increases dramatically asn —n_, . At n < n_, thereis a transition accompanied by
the formation of a charge density wave.

The model of a highly anisotropic electron liquid and of an electron-hole liquid is
intriguing because the correlation energy in it is comparable to the kinetic energy at
high densities, where the random-phase approximation is valid." It was shown in Refs.
24 that a strong correlation interaction of this sort in an electron-hole liquid results in
several interesting properties, including superconducting properties. It was pointed
out in those studies that in the absence of a dispersion of the dielectric constant an
electron liquid does not have the properties characteristic of an electron-hole liquid. In
the present letter we analyze an electron liquid in a doped semiconductor with a large
number of electron valleys, v> 1, with an electron dispersion law which is the same for
all valleys [e(p) = p*>/2m, where m is the effective mass of the electron] and whose
dielectric constant has a strong frequency dispersion, with the result that an electron
liquid of this sort has a superconductivity. We know® that incorporating the interac-
tion of electrons with the optical phonon mode described in polar semiconductors by
the coupling constant g(k) = [ (2me*/k?) (ky — K, /Ko &, Yoiwy]'/? acts along with
the Coulomb interaction between electrons, to cause a frequency dispersion of the
dielectric constant: « (iw) = k_, ko (@h + @*/Kk , @f + K, @), where a, is the frequency
of a longitudinal optical mode, and x, and «_, are the static (w—0) and high-frequen-
¢y (0> wm,) dielectric constants, for which we assume x,>x . For the discussion
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below it is convenient to choose a system of units with ¢*/k , = m = # = 1. The most
interesting region of densities of an electron liquid, which we will be discussing below,
is the region v<&n <v*. In this region (first) the random phase approximation is valid,
and (second) the momenta and frequencies determining the renormalizations of the
chemical potential and of the interaction vertices are typically high: k~#n'*> p,.,
w~n'*>¢€,, where p,. = (37")"/> and €, = p3./2 are the Fermi momentum and Fer-
mi energy. For the latter we assume €, > "w,. We consider the Dyson equation for a set
of ladder diagrams with a zero net momentum (Fig. 1). An integration over the
internal momenta in the diagram (Fig. 1b) is carried out near the Fermi surface.
Diagrams which are irreducible by the Cooper channel contribute to the vertex
Io( py p,) (Fig. la), as do reducible diagrams with an integration over the internal
momenta far from the Fermi surface. A selection of diagrams for I'y( p, p,) was also
carried out in Refs. 2—4. Their sum is

Lolpip2)= (V (@) + N1 -vIo @)V @w) + 7)1,

where q=p, ~ P, ® =€, — €, |p1| = |P2] = Pr, I (qw) is the zeroth polarization
operator, V(qw) = 4mx_ /q*x (@), and the vertex ¥ is determined by the sum of dia-
grams (Fig. 2). The wavy line on these diagrams represents the screened Coulomb
interaction in the random-phase approximation. The diagrams in Fig. 2 are dominated
by integration momenta and frequencies p~n'/*> p, and w ~n'?>¢€,; the vertex y
can therefore be assumed independent of the external momenta and frequencies. Fur-
thermore, since the relation €, > w,, holds, this vertex is determined by «_, . A simple
calculation yields y = — 7°/*[T"(1/4)] ~2n~3/4, The contribution of the vertex y—an
attraction—to the effective interaction I'y( p,p,) is important only at frequency trans-
fers w €w,, because in the region of densities under consideration here the relation
V(prw®»w,) =47/ p%>|y|, holds, and at a sufficiently large value of x, we have
V( pryw—0) = (47K, / prky) € |y]. At this point we assume

amk,, [pp ko <iv]. (1)
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FIG. 2. Diagrams for the vertex y.




Let us examine the vertex I'y(p;p,;0 = 0) at a zero transfer frequency. We see from
I'y( p{ p2), that it has a pole if

4
F(q) = [1- vyI,(q,0)]q* —»Io(q, 0) n::“ = 0. (2)
0

If F(g) vanishes at real |g|£0, the homogeneous ground state of the electron liquid
becomes unstable, and a charge density wave forms in it. This instability is accompa-
nied by a structural instability, as can be seen easily by examining the phonon Green’s
function. The renormalized phonon frequency tends toward 0 as F(g)—0. The exis-
tence of a solution of Eq. (2) is determined by the quantity a(g) = 1 — vylIl,(g). If
the density of the electron liquid satisfies n>n, = (3/8)'%/5n, {n, is the density for
which the ground-state energy has a minimum, its value, derived in Ref. 1, is n,
= 8/5(23/323y = "/12[T'(1/4)] % n, is determined from the condition a(0) = 0},
then we have a(g) >0 for arbitrary g. We then also have F(q) >0 for all q. If #>n,,
then a(q) = 1. It is easy to see that there exists a maximum density n,, for which Eq.
(2) can have real solutions. At densities n < n,, there will be a transition accompanied
by the formation of a charge density wave, while at n> n_, the homogeneous ground
state of the electron liquid will be stable. In the present letter we are considering only
densities n > n_,., and we are interested primarily in densities n,, <n <n,. Let us ana-
lyze F(q) under the condition g € py and at densities close to #,, for which the relation
|@(0)| <1 holds. At these densities it follows from (1) that we have
B = [vII,(0)/ p} | (4mk, /k,) €1. Under the condition g< p, we have Iy (q)
= ( —pp/m?)(1 — ¢*/8p%). Substituting this expression for I1,(g) into (2), and ex-
pressing g in terms of the angle () between p, and p, ¢° = p%02(0<«1), we find F(9)
= (pr/mH)10% — 4] a(0)[]1%> + 88 — 16a(0) }. At r?> =8B — 16a*(0) >0 we have
F(8)>0 for any 6, while at r2<0, there exist values of 6 for which the relation
F(6) = 0 holds. This result means that 7> = 0 is the equation which determines 7,
and the conditions n > n,, and » 2> 0 are equivalent. From the relation F(8) =0 at
r 2 =0 we can find the momentum which determines the period of the charge density
wave: |qql. It turns out to be ¢, = 2p, / [@(0)|. From the equation for n, and condi-
tion (1) we see that the relation n, — n . €n, holds. Assuming that the densities # are
close to n_., we consider the case r > ¢3. For angles 8 close to 8, = 2 \ﬂa—(O—)T we thus
have F(80) =163 p} [ (80)* + (r?/403] ', where 86 =0 — 6,, 56<b,, and the
vertex I'((8) is given by

2 (dme [xo)~1vipEE]
Io 68) = 753 . (3)
Pp% (80 + (* /462 )

Substituting &, into (3), and using inequality (1) and the inequality |z (0)] €1, we
easily see that the relation yp%0 3 > (4w, /k,) holds. This result means that the effec-
tive interaction I'y(#) is attractive. Let us calculate the harmonic of the effective
interaction with an orbital angular momentum / = 0: [{'=% = (7 I'y(0) sin 6d6. This
integral is dominated by angles 8~6,. Substituting (3) into it, we find T{'=?
= — |y|(270/r). From this expression for the static effective interaction we see that
this interaction increases greatly in the limit r—0, i, as n—n_. At densities n>n,
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this weak interaction is described by I'§{ =® = — ¢(|y| pp/v), where c~1 is a number
which arises as a result of an averaging over angles. The superconducting gap A at

n>n, can be determined in the BCS theory: A ~.[k_ /kow, exp{ — v/(c|y| p%)}. The
question regarding the gap at # values close to r,, require an additional analysis.

The transition to a superconducting state, the transition accompanied by the
formation of a charge density wave at n < n.,, and the growth of the effective interac-
tion as n - n . —all these properties are characteristic of a quasi-two-dimensional elec-
tron liquid with a distance d €« between planes (aj is the first Bohr radius) and of
an electron liquid in a semiconductor with highly anisotropic electron valleys (this
assertion also includes the case v~1).
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