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A way to avoid perturbation theory in the theory of a fermion string is pointed out.

The theory of the fermion string in the Polyakov formalism leads to expressions
for a partition function and for string amplitudes in the form of sums of integrals over
finite-dimensional superspaces M, : spaces of the moduli of superconformal manifolds
of type p (Ref. 1). An expansion in this sum corresponds to a loop expansion (i.e., a
perturbation theory in the topological charge). In order to avoid perturbation theory,
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it is necessary to switch from M, to a universal modulus space. A corresponding
program for a boson string was outlined in Ref. 2, but at this point it is far from
completion. We will show here that considerably more progress can be made in the
case of a fermion string. In particular, we define a universal modulus space (UMS)
and construct in it an entity which transforms on each of the M, into a Mumford
superform® which may be thought of as a holomorphic square root of a string mea-
sure.* We then find an expression for the string measure in terms of superanalogs of
the Sato 7-function. An analog of the UMS may also prove useful in the theory of a
boson string. (In the boson case, the manifold Gr is used as the universal modulus
space?; the definition of this manifold is generalized directly to the supercase.” How-
ever, the manifold Gr is wider in both the supercase and the boson case than an
universal modulus space should be.)

We start from the superspace H which consists of superfields of the form
F(z,6) = f(z) + ¢(z2)0, where |z| = |, and 8 is an odd variable. We define a bilinear
scalar product in H by means of (F,F') = ¢ f(z)f'(z)dz + $@(z)p’'(2)dz, where
|z| = 1. We denote by S a subset of the basis {z*,z*0}, where k is an integer, which is
found by connecting and removing a finite number of elements from the S, subset
{z",2*6,k < 0}. We denote by H(S) a subspace constructed on S. We denote by Gr a
supermanifold which consists of subspaces WC H for which the projection onto one of
the H(S) is an isomorphism. The group T" of reversible, even, smooth superfields
A(z,6 = a(z) + a(z)6, |z| = 1, acts in H and in Gr with the help of multiplication
operators. We denote by UMS the submanifold of the set Gr which consists of those
WeGr with A€l for which we have W' = II4AW [ W' is the orthogonal complement
of W; the operator I1 transforms f(z) + @(z)8 into ¢(z) + f(z)8]. We denote by N a
complex compact supermanifold of dimensionality (1, 1); L is a linear stratification
with a base N. If we choose a coordinate system (z,8) near one of the points &, and if
we fix the trivialization of the stratification L on this neighborhood, we determine
W= W(N,L) as the space of fields f(z) + ¢(2)6, |z| = 1, which continue into holo-
morphic cross sections above N\ U,, where U, is distinguished by the inequality
|z| < 1. 1t is easy to see that we have W(N,L)eGr and AW(N,L) = W(N,L'), where
Ael’, and L' is another linear stratification on N. It can be shown that we have
W(N,L)eUMS. The proof is based on the relation W(N,L)' = IIW(N,L ~'®w),
where o is a stratification whose cross sections are complex measures on V. We can
thus interpret UMS as a universal modulus space, and we can treat the points of UMS
as supermanifolds of an arbitrary (possibly infinite) kind. We consider finite-dimen-
sional superspaces (W) = .o/ (W) 4+ &/ (W), where ./ (W) consists of elements of
the space W which vanish when W is projected onto H(S,). With any basis w in
(W) we can associate a basis & in W, determined within a transformation having a
unit berezinian. [ For example, if ./ (W *) = 0, a basis i can be constructed by com-
plementing the basis w in 2 (W) = &/ (W) with functions which are mapped upon a
projection onto H(S, ) into the basis S, of the space H(S,).] Denoting by w a basis in
(W) and by w' a basis in Z(AW), we determine 7(w,w’,W,4) as the determinant of
the transformation from the basis 4i in AW to the basis w’. (In the supercase, in
contrast with the boson case, this determinant is finite.) Using the function 7, we can
interpret the Mumford superform® in terms of a UMS. Specifically, if we have
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WeUMS, W' =THAW, A4, we set Mww W) =r(ww,W,A?)
X 7(w,Iw, W,4)~3; here w is a basis of (W) =X (W*'), Ilwis a basis of [IZ(W*)
=3(MW*') =3(4W), and w' is a basis of Z(4*W). The function M(w,w',W) does
not depend on the choice of the operator A€l; it has a weight of 1 on w' and a weight
of 5 on w. {A function of the basis has a weight # if it is multiplied by (Ber C)" upon
the replacement of the basis with matrix C.] If W= W(N,L), where N is a supercon-
formal manifold, and L is a trivial stratification, then 3 (4"W) is identified with .&7"/2
+ Myt~ ™/2 where o/ * is the space of holomorphic fields of type (k,0) on N, and
IT is the parity-reversal operator. For this identification, M (w,w’, W) transforms into a
Mumford superform. The function M determines a continuation of a Mumford super-
form into an entity which is defined on the space of moduli of all (not necessarily
superconformal) (1, 1)-dimensional compact supermanifolds. The possibility of such
a continuation also follows from Ref. 3. For any point W= W(N,L)eUMS corre-
sponding to a superconformal manifold ¥ one can also find functions P and Q of z, 6,
|zl =1, such that the operator PD+ Q sends W into itself (as wusual,
D =3/36 + 63 /3z). We have found an expression for the string measure in terms of
the function 7 (Ref. 4). This function is an analog of the r-function in the Sato sense,
but its properties are simpler. Specifically, the dependence of the function 7 on 4 with
W = W(N,L) can be described by means of meromorphic Abelian integrals on super-
manifold N.

We conclude by showing how the UMS is described in terms of a Fok space,
restricting the discussion to the boson case for simplicity. In this case, the role of H is
played by a space of functions on the circle |z| =1 with the scalar product
$/(z)f(2)dz, |z| = 1. On the complex curve N and the stratification L we construct a
subspace> W= W(N,L)eGr. These subspaces satisfy the condition W* = 4W, where
A is the operator representing multiplication by a function. By choosing L appropri-
ately we can achieve A=1 (for this case, we should treat L as a spinor stratification
with an even nondegenerate G-characteristic). Accordingly, the UMS in the boson
case should be determined as a manifold of subspaces WeGr which satisfy the condi-
tion W= W. With each WeUMS we can associate a vector ®, determined within a
coeflicient, from the fermion Fock space with the annihilation operator a, and the
creation operator a,}, n =0,1,2,..., finding it from the relation ($/(2)¥(2)dz)® =0,
where feW and ¢(z) = 2a,z" + 2a,"z7 '~ ", n>0. Conversely, if the vector ® can be
found from a Fock vacuum by means of a linear canonical transformation
a, =2u,,a, + 2v,.a", then ® corresponds to some WeUMS. Corresponding con-
structions can be pointed out in the supercase.

I would like to take this opportunity to express my gratitude to A. Voronov,
A. Zorich, and A. Radul.

'M. A. Baranov and A. S. Shvarts, Pis’ma Zh. Eksp. Teor. Fiz. 42, 340 (1985) [JETP Lett. 42, 419
(1985)].

*D. Friedan and S. Shenker, Phys. Lett. B175, 287 (1986); Yu. I. Manin, Funkts. Anal. Pril. 20, 88 (1986);
L. Alvarez-Gaume, C. Gomez, and C. Reina, Phys. Lett. B190, 55 (1987); A. Yu. Morozov, Pis'ma Zh.
Eksp. Teor. Fiz. 45, 457 (1987) [JETP Lett. 45, 585 (1987)].

430 JETP Lett., Vol. 46, No. 9, 10 November 1987 A.S.Shvarts 430



3A. A. Voronov, Funkts. Anal. Pril. 21 (1987).

“M. A. Baranov and A. S. Schwarz, Int. J. Mod. Phys. A2, (1987).

*Yu. Manin and A. Radul, Commun. Math. Phys. 98, 65 (1986); K. Ueno and H. Yamada, Lett. Math.
Phys. 13, 59 (1987).

Translated by Dave Parsons





