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It is shown on the basis of one of the general cosmological solutions of Belinskii and
Khalatnikov {Zh. Eksp. Teor. Fiz. 63, 1121 (1972) [Sov. Phys. JETP 36, 591
(1972) 1} that as a metric evolves toward a singularity in a stochastic oscillatory
regime, some regions with a small-scale cellular 3-geometry structure form near it.
The statistics of the exponents and the time evolution of lengths in such regions are
studied.

1. An oscillatory regime near an isolated spatial point in relativistic cosmology
has been studied in detail.>*' In the present letter we examine the effect of a prolonged
oscillatory evolution of the metric on the structure of the exponents in a coordinate-
finite spatial region near a singularity. For this purpose we use the example of a
nonvacuum general solution whose evolution includes an oscillatory stage and a
monotonic stage (containing a singularity), as constructed by Belinskii and Khalatni-
kov: In an individual epoch we have ds* =dt? — ("L (x)dx®)?, Zp,(x) =1,
SpA(x) =1 — g (x)[t<,x=(x"), where a = 1, 2, 3; all the sums are over the three
axes [, m, n; and g = 0 corresponds to the well-known Belinskii-Lifshitz-Khalatnikov
solution®]. The oscillatory stage combines epochs with a negative exponent in the
metric. In the given epoch and in the epoch which follows it (in the direction £—0),
the exponents are coupled by a local mapping: For p, <0,

' -p . Ppt2p y_ Pyt2p o, q

b, = q

’ ’ ) =TT T . (1)
1+2p, " 1+ 2p, "1+ 2p 1+ 2p,

Iterations of (1) lead to an epoch with p,(x), p,, (x), p, (x) > 0, which lasts until 7 = 0
(the monotonic stage at point x). The reasons for choosing this solution are that (1)
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FIG. 1. Part of the plane of the complex parameter ( — p, + ig/y2)/(1 — p,) = z with Im z>0 (the pattern
is the same at Im z<0). Heavy lines—the boundaries of X, M, M', M", zeK: p, <0<p,<p;, zeM:
0P <P <Py, 2EM 1 0P, <p <P, 26M ": 0K p, <Py <P, . Several subregions K, in K are shown; the others are
hatched.

the geometry in it is richer than in the Belinskii-Lifshitz-Khalatnikov solution, since
the metric contains an additional arbitrary function g(x), (2) the transition to the
monotonic stage makes it possible to describe the spatial structure of the exponents in
a simple way near ¢ = 0, and (3) in the class of nearly vacuum initial conditions these
exponents have a quasi-invariant statistical distribution in the monotonic stage [oscil-
latory stage: ¢ =1,:¢°(x) €1] by virtue of the onset of a stochastic situation in the
oscillatory stage.

2. Using the ordered indices p; <p, <p;, we introduce the definition

-p +ixq/\/? _ u+tiv= wEK: pi(uv/<0 (08S)

= 2
1- p, U+iV=W €M:p, (U V)>0 (MS) )

(see Fig. 1 regarding the regions K and M and also the regions M ', M ", and K,, which
are introduced below). The quantity « = + 1 transforms as «' = — ksign{(p,
+ 3p) (p; + 3p) ] upon a change of epochs. From (1) and (2) we have a chain
fraction (a,,..., a, =1, 2,...) for W(w):

Wiw)= 8,5 z(w)—-825 [1, z(w)] + 835/2(W), 3

z(w): {w=[ay,...,a,,2] WEK,zEMUM'UM"},

where J=1, 2, 3, respectively, for zeM, M', M". Here W(w) is a continuous,
piecewise-conformal mapping of X onto M with a countable set of inverse images K, of
the region M in K, and we are using the “multi-index” r = {a, ..., @,,; J}. In the limit
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Im w—0, it has a mixing (similar to a Gauss mapping*) and an invariant metric in M
[see (5)]. In the oscillatory stage we specify a function w(x) (assuming that the
change of epochs occurs instantaneously at ¢ = ¢, ) in the 3-space region 4. As -0 (in
the monotonic stage), we denote the same region by B. For the mapping
w(x):A—K(4) CK the partitioning K = U K, correspondstod = U, 4,, {r}C{r}.
For simplicity, we assume K(4) = K and that all the A, are singly connected. Two
commuting pairs of single-valued mappings, w(x):4,-K,,W,(w):K,-M and
t(t,)>0:4,- B, W w(x)]:B, — M, determine a partitioning of the region B = U B,
into a countable set of cells, in each of which the set of exponents (p, p, p;) takes on
all the values allowed algebraically under the condition p, >0. Over n epochs, ~2"
cells form. The boundary of a cell is a two-dimensional surface of a degenerate dynam-
ics: It consists of three pieces, on which we have either p, =0 or p, =p, or p, =p;.
The pieces are joined transversally. The cells are “glued” to each other along corre-
sponding pieces. It is easy to show that the surface of a cell cannot be homeomorphic
with respect to a sphere, and in the typical case it is topologically a torus or a cylinder.
Cells with g>2 handles are atypical: They arise only if there are points with
VU (x) =0or Y] V(x) =0 at their boundaries.

We now assume that w(x) corresponds to a small g-perturbation of the Belinskii-

Lifshitz-Khalatnikov solution in 4. In other words, we assume that the distribution in
u,vin A att=¢,

pA v [W()]) = Q7A)[8(wlx) ~w) Vyd x Q4)= [ Vydx (@)

[a functional of w(x)], is of such a nature that we have |v| €ov<1 and e=ov/ou <1
(v and ¢?v are the mean value and the variance). Under reasonable restrictions on the
form of p,,, a lower estimate of the number of cells in B with a total volume ~Q(B) is
N~e'>1; ie., 0<Q(B,) SeQ(B). A set of cells forms a small-scale geometric
“foam.” Only in the limit €0, in which we have . -0 (the time of the transition to
the monotonic stage), is a solution with p, = 0 stable, ¢ < ¢. [if, on the other hand, ¢.
is not zero, then on the interval 0 <? <. a drift will arise from p;(¢.) = 0 to some
0<p,(0)<1].

The stochastic behavior in (3) in the limit Im w— 0 generates a universal statis-
tics for U, V in region B as €—0: On any family {w,(x)} there exists

lim oy, (U,V;[ W(w, (x))]) =p(U,¥). Analysis of (3) yields

p(U V) =—2—2 [ 3-Y arctan ¥ — U1 apctan ¥V
114 vV U vV U+1

_ Ut +v? V3

U+U+y?"

From (5) we find the numerical results (p,;0,;75;]9]) = (0.06;0.17;0.77;0.50).
3. The length of the vector A” on the set of realizations W(x) is a random quanti-

ty [2(t71,A*)?]"?=A(1). Its moment A° (s>0) decreases as /-0 as the Laplace
integral [ *p(p,)@(p,)dp,, where p(p, ) is the transformed distribution (5). Here we
have p(p, € 1) ~p; /%, and @(p, ) is a contribution of the correlation of the vectors /,,

arctan

(5)
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Mgy, R, With W, which arises because of their rotations in the oscillatory stage. The
nonlocal nature of the rotation formulas® prevents us from finding @, but we can show
that we have 0 < ¢(0) < . Consequently, we have A* (1-0)~( —In 1)~ V2, with re-
gard to the local length, we can only assert that it falls off slowly as t—0. From

inequalities of the Chebyshev type it follows that the probability satisfies
P {XNt)=>er V2WLMYy <)L (1), r=—Int->oo, (6)

where L(7) is an arbitrary slow-growth function: As 7— o and with ¢>0 we have
L(cTy/L(7)—-1; i.e., (6) is invariant under the replacement #—#°.

We now assume that A1%(8) is a tangent vector of a curve of general position C:
{x* =x*(0), 6<[a,b]}. Partitioning [a, b] into N equal parts A,, we find the length
of the curve to be I (#) = f5d6A(1,0) = N ~'3, A, (1), where A, (1) =A(1,6,€A,). In
the limit €—0, the A,,. .., Ay give us N independent random quantities, and in the
limit N— o we have eN—0 with a probability of 1:

lp(t)~(—Int Yy 1'%, >0, (7)

We are indebted to V. A. Belinskii, who called our attention to Ref. 1, and to L.
M. Lerman and A. M. Satanin for useful comments.
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